
WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Kilian Q. Weinberger, co-chair

Roman Garnett, co-chair
Sanmay Das
Ben Moseley
Robert Pless

Fei Sha

Learning in the Real World: Constraints on Cost, Space, and Privacy
by

Matt J. Kusner

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2016
Saint Louis, Missouri



© 2016, Matt J. Kusner



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Real-World Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Cost: Explicitly optimizing the accuracy/time-cost trade-off . . 13
2.1 Approximately Submodular Tree of Classifiers . . . . . . . . . . . . . . . . . 14

2.1.1 Resource-Efficient Learning . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Cost-Sensitive Tree of Classifiers (CSTC) . . . . . . . . . . . . . . . . 20
2.1.4 A Simplier Tree-Based Model . . . . . . . . . . . . . . . . . . . . . . 23
2.1.5 Greedy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.6 Fast Selection via QR-Decomposition . . . . . . . . . . . . . . . . . . 28
2.1.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Cost-Sensitive Regularization . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Tree-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.4 Decision-Making Schemes . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.5 Submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3: Space: A model for compressing the k-nearest neighbor rule . 39
3.1 Stochastic Neighbor Compression . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 The Stochastic Neighborhood . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 How to Compress a Dataset . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Metric Learning Extension . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



3.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Training Set Consistent Sampling . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Prototype Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 Prototype Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.4 Gaussian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 4: Privacy: Protecting individual privacy in causal inference . . . 63
4.0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Private Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Causal Inference & Privacy . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 Additive Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.4 Inferring Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.5 Dependence Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.6 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.7 Test Set Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.8 Training Set Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Bivariate Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 5: Discussion and Future Directions . . . . . . . . . . . . . . . . . . . 91

Appendix A Privacy Proofs of Chapter 4 . . . . . . . . . . . . . . . . . . . . 97

Appendix B Grants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

iii



List of Tables

1.1 Example loss functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Example regularization functions. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Training error and cost results for solving equation (2.5) on the spam dataset,
under different regularization trade-offs λ. . . . . . . . . . . . . . . . . . . . 20

2.2 Training speed-up of ASTC over CSTC as a function of tree budgets on Yahoo!
and Forest datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Training speed-up of ASTC over CSTC for CIFAR and MiniBooNE datasets. 31

3.1 Characteristics of datasets used in evaluation. . . . . . . . . . . . . . . . . . 49
3.2 SNC training times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Left: Speed-up of kNN testing through SNC compression without a data

structure (in black) on top of ball-trees (in teal) and LSH (in purple). Results
where SNC matches or exceeds the accuracy of full kNN (up to statistical
significance) are in bold. Right: Speed-up of SNC at 4% compression ver-
sus ball-trees and LSH on the full dataset. Bold text indicates matched or
exceeded accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Dependence scores and their privacy. A checkmark indicates that there exist
meaningful bounds on either the global or local sensitivity. . . . . . . . . . . 76

4.2 The non-private accuracies of the ANM model on a subset of the Cause-Effect
Pairs Challenge [78], as well as the probability of correct causal inference after
privatization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

iv



List of Figures

1.1 Types of set functions. (Left.) A modular function, in which each element
contributes a certain value, independent of other elements. (Center.) A sub-
modular set function, notice that the diminishing marginal returns charac-
teristic of submodular functions becomes negative in this case. (Right.) A
non-decreasing submodular set function. . . . . . . . . . . . . . . . . . . . . 11

2.1 A visualization of different classifiers learned from the resource-efficient learn-
ing objective in equation (2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The CSTC tree (depth 3). Instances x are sent along a path through the tree
(e.g., in red) based on the predictions of node classifiers βk. If predictions are
above a threshold θk, x is sent to an upper child node, otherwise it is sent to
a lower child. The leaf nodes predict the class of x. . . . . . . . . . . . . . . 22

2.3 The optimization schemes of CSTC and ASTC. Left: When optimizing the
classifier and threshold of node v2, (β2, θ2) in CSTC, it affects all of the de-
scendant nodes (highlighted in blue). If the depth of the tree is large (i.e.,
larger than 3), this results in a complex and expensive gradient computation.
Right: ASTC on the other hand optimizes each node greedily using the fa-
miliar ordinary least squares closed form solution (shown above). θ2 is set by
binary search to send half of the inputs to each child node. . . . . . . . . . . 25

2.4 Plot of ASTC, CSTC, and a cost-sensitive baseline on on real-world feature-
cost sensitive dataset (Yahoo!) and three non-cost sensitive datasets (Forest,
CIFAR, MiniBooNE). ASTC demonstrates roughly the same error/cost trade-
off as CSTC, sometime improving upon CSTC. For Yahoo! circles mark the
CSTC points that are used for training time comparison, otherwise, all points
are compared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 The k-nearest neighbor rule first described by Cover & Hart [40], in which
a test point is classified by the majority class of its nearest neighbor in the
training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 An illustration of the individual stages of SNC. The input data (left) is first
subsampled uniformly (middle) and then optimized to minimize leave-one-out
nearest neighbor error (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 kNN test error rates after training set compression obtained by various algo-
rithms. See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 YaleFaces before and after compression. . . . . . . . . . . . . . . . . . . . . . 57

v



3.5 Left: The decision rule and SNC data set (white circles) learned from 2d
USPS digits under varying γ2. Right: kNN test error rates with various data
set reduction methods on the Letters dataset under artificial label noise. . . 58

4.1 The graphical model representations for both possible additive noise models
(ANMs) [89]: X → Y and Y → X. In this model if a random variable X
causes another Y , then Y is a function (e.g., f) of X plus random noise NY .
Importantly, it is assumed that this noise is independent from the input X,
which will help us identify the causal direction from samples of X and Y . See
text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 An illustration of the high-level steps of the ANM algorithm [89, 125]. . . . . 72
4.3 Probability of correctly identifying the causal direction on datasets selected

from the Cause-Effect Pairs Challenge [78]. Datasets for which the scores
perform well were selected in order to isolate the effect of privatization on the
scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Training set privacy for the HSIC score. The three left-most plots show how
λ affects the probability of correctly inferring the causal direction, while the
right-most plot depicts this probability when the best λ is selected over a
ε ∈ [0.1, 10]. See text for more details. . . . . . . . . . . . . . . . . . . . . . 88

vi



Acknowledgments

Throughout my graduate work there were four forces in my life to which I owe the most

credit: Sonia, Kilian, Eddie, and my family. I had no publications before I met Sonia. She

taught me how to be a dedicated realist, a crucial skill for readying papers for submission,

for delving into new research topics, and for living a life outside of graduate study. She is

that person who really fights to make me better than I am. She has brought me balance.

To my best friend.

To my advisor Kilian, who really taught me about professionalism, a person who was genius

at putting himself in another person’s shoes, a perfectly strict editor, the guy always testing

the limits of your abilities and wondering why he had hit their boundaries.

When I joined Kilian’s lab I was not prepared to do research in machine learning. Eddie saw

to it that I would be. Eddie would be my model for a successful graduate student. I have

known no one to work harder on research than him. Eddie’s generous offers to include me

on projects early in my Ph.D. were truly the foundation of my research confidence.

There were frequently large decisions that I needed outside opinions on. My family: Dad,

Mom, David, Jon, and Anna, were constant coaches, always trying hard to figure out the

outcome that would benefit me the most. Thank you Dad for always being confident in

me, Mom for your endless excitement about anything having to do with me, David for

humorously pointing out the absurdity of things, and Jon for keeping me honest. I thank

Anna for the inspiration to fight against odds, to never put boundaries on yourself, and for

vii



the perspective to realize there are problems larger than I have ever known; and that even

these can be overcome.

Thank you to my lab-mates: Yu Sun, who has an insatiable curiosity and a uniquely critical

mind. To Gao Huang, who is never defeated by anything. To Dor Kedem, for his attention

to detail and his friendship. To Stephen Tyree, for being a counter-weight to both Jake

and my excessive optimism and for his cooking advice. To Jake Gardner, for his humor and

discussions on all things Bayesian. To Nick Kolkin, for keeping an eye on me and his ready

assistance and clear mind. To Wenlin Chen, for being my submodular consultant, constant

fellow-student inspiration, and strategic advisor. To Minmin Chen, who set the bar for

research productivity. To Quan Zhou, with whom I had insightful discussions about Chinese

politics, Eastern medicine, and the convenience of sitting in a sunlit room. To Shuang Liu,

for his big heart. To Felix Wu, for his ferocious energy and enthusiasm. To Chuan Guo,

for helpfully questioning anything I said that lacked justification. To Geoff Pleis, who is a

superb listener. To Jack Hessel, for welcoming me to Ithaca and his ability to get to the

point of something.

Thanks to my collaborators, Roman Garnett, who has astoundingly detailed research intu-

itions and his good-natured wit. Gustavo Malkomes, for his humility and pointed questions.

Ben Moseley, who can draft a paper in a day and for his professional advice. Karthik Srid-

haran, for never being unfamiliar with any theory and his effortless humor. Jason Barnes,

for his honesty and his appreciation of good food. Yixuan Li, who can explain anything.

Paul Upchurch, for whom it is never too late to change or improve. Vlad Niculae, who codes

beautifully and is a true friend. Kunal Agrawal, for her superhuman writing and editing

skills. To John Cunningham, Kavita Bala, John Hopcroft, and Olivier Chapelle.

viii



To the perfect and tireless staff: Kelli Eckman, Lauren Huffman, Jayme Moehle, Cheryl

Sickinger, Sharon Matlock, Myrna Harbinson, and Madeline Hawkins.

Thank you all.

Matt J. Kusner

Washington University in Saint Louis

August 2016

ix



ABSTRACT OF THE DISSERTATION

Learning in the Real World: Constraints on Cost, Space, and Privacy
by

Matt J. Kusner
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2016

Professor Kilian Q. Weinberger

The sheer demand for machine learning in fields as varied as: healthcare, web-search ranking,

factory automation, collision prediction, spam filtering, and many others, frequently outpaces

the intended use-case of machine learning models. In fact, a growing number of companies

hire machine learning researchers to rectify this very problem: to tailor and/or design new

state-of-the-art models to the setting at hand.

However, we can generalize a large set of the machine learning problems encountered in

practical settings into three categories: cost, space, and privacy. The first category (cost)

considers problems that need to balance the accuracy of a machine learning model with the

cost required to evaluate it. These include problems in web-search, where results need to be

delivered to a user in under a second and be as accurate as possible. The second category

(space) collects problems that require running machine learning algorithms on low-memory

computing devices. For instance, in ecological mapping or urban planning operations we may

opt to use many small unmanned aerial vehicles (UAVs) equipped with machine learning

algorithms to classify an area of land. These algorithms should be small to fit within the

physical memory limits of the UAV (and be energy efficient) while reliably classifying the

landscape. The third category (privacy) considers problems where one wishes to run machine

learning algorithms on sensitive data. It has been shown that seemingly innocuous analyses

on such data can be exploited to reveal data that individuals would prefer to keep private.

x



Thus, nearly any algorithm that runs on patient or economic data falls under this set of

problems.

We devise solutions for each of these problem categories including (i) a fast tree-based model

for explicitly trading off accuracy and model evaluation time, (ii) a compression method for

the k-nearest neighbor classifier, and (iii) a private causal inference algorithm that protects

sensitive data.

xi



Chapter 1

Introduction

Over the years the power of machine learning methods to produce solutions to various appli-

cations has made it one of the biggest success stories of computer science and mathematics.

On a wide range of datasets and problems, machine learning (ML) models have surpassed

expectations, even outperforming humans [84]. Companies all over the world have begun

hiring machine learning researchers, and ML-based startups are being created at break-neck

pace. From applications as diverse as forecasting injury in car crashes [37] to automated

recipe recommendation [167] machine learning is making a mark.

In the past 10 years, application areas for ML have exploded in number. Many of these

applications test the ability of ML to learn while being constrained by other resources. In

this thesis we tackle three such constraints: Cost - cases in which one would like to make a

machine learning prediction within some cost budget (e.g., time, dollars, carbon emissions);

Space - settings that constrain the size of the machine learning model; Privacy - when the

data on which an ML algorithm is trained is desired to be kept private (even if the model

or predictions are not).

Our first algorithm, Approximately Submodular Tree of Classifiers (ASTC) directly learns

an accurate ML classifier within a cost constraint by formulating the inherent optimization

1



problem as a series of approximately submodular optimization problems. We nest these

optimization problems (each of which produce an ML classifier) within a tree-structure so

that different data points have ‘specialty’ classifiers designed for them. We show how ASTC

matches and outperforms state-of-the-art methods while also being significantly faster to

train.

Our second algorithm, Stochastic Neighbor Compression (SNC) learns a compressed dataset

for the purpose of k-nearest neighbor classification (in which model size is the dataset size).

We use a stochastic relaxation of the 1-nearest neighbor rule called the ‘stochastic neigh-

borhood’ [86] and derive a continuous and smooth objective that can be easily optimized

via conjugate gradient descent with simple matrix updates. We demonstrate that we can

compress datasets to as low as 4% of their original size without sacrificing model accuracy.

Our third contribution is a technique to privatize causal inference, the first such method we

are aware of. We consider a popular model for bivariate causal inference called the additive

noise model (ANM) [89]. We show that we can efficiently and without noticeable losses in

accuracy apply noise-addition techniques to the result of ANM causal inference to ensure that

personal data remains private. We make use of the robust and widely-adopted framework of

differential privacy [55] to do this. On causal inference tasks randomly chosen from a set of

competition benchmarks [78] we show we can, with high probability, simultaneously release

the same results as the ANM privately.

1.1 Motivation

In large part, there is often a wide disconnect between state-of-the-art machine learning

done in a research context, and the machine learning models that are used in the real-world.

2



Whereas researchers in academia are interested primarily in optimizing some objective, the

practitioner is often faced with additional budget constraints.

1.1.1 Real-World Examples

For instance, consider three likely real-world machine learning scenarios:

1. You are a machine learning specialist at a web-search company. You are tasked with

designing a model that achieves Precision@5 (a ranking criterion) of at least α and

that returns a result in under one millisecond. Even if there are multiple models in the

machine learning literature that could reach this result, it is unlikely the strict time

constraint also happens to be satisfied, especially because it was not simultaneously

optimized for. How should you proceed?

2. You are an environmental researcher working to automate ecological identification.

For instance, you may be interested in finding out what sorts of plants exist, what

the climate is like, and what sorts of wildlife live in the area. For such identification

purposes, you would like to deploy many small unmanned aerial vehicles (UAVs) and

make sensor readings (e.g., temperature sensors, photographs, laser range-finding mea-

surements). Each UAV can take readings of the region it is currently searching, and

can communicate them back to a centralized base of operations. However, this com-

munication requires a non-trivial amount of energy and limits search time and thus

should be done sparingly. To determine if imagery is worth sending back you would

like to automatically classify readings on board the UAV. To do so, you wish to deploy

a nearest-neighbor classifier using a set of canonical readings that have been classified

manually by experts. Unfortunately, the UAV has very restricted computation power

3



and memory. How should you limit the size of the dataset so that it runs quickly and

fits within the UAV memory while maximizing classification accuracy?

3. You are a medical researcher who would like to leverage recent work in causal infer-

ence to determine if a new procedure is in fact causing a new-found deadly infection.

You would like to publish your findings but you are worried that it will leak private

information about the patients you collected data from (namely that they needed to

have the procedure and/or they have the infection). How can you release the causal

result and with high probability not reveal private patient data?

In each of the above settings the modeler is confronted with a trade-off between maximizing

an objective (often requiring a higher cost, space, and/or publicity) and minimizing a budget

(often forcing a lower objective). Instead of dealing with such problems as they arise, machine

learning researchers need to think hard about how to explicitly design models that can be

optimized under real-world budget constraints. The focus of this thesis is to do just that.

Specifically, we will consider three specific types of budgets highlighted in the above examples:

cost, space, and privacy. These already encompass a variety of machine learning scenarios

from recommendation, face recognition, bankruptcy prediction, weather forecasting, stock

market modeling, advertising, real-time machine translation, and many others. We address

each budget in the following chapters and design models to directly address the trade-off at

hand. To demonstrate the benefit from explicitly considering the objective/budget trade-off,

we show how well our models perform on a number of the settings mentioned above.

4



1.2 Mathematical Background

In this section we describe the mathematical concepts that will be important for understand-

ing the key contributions of the thesis.

1.2.1 Empirical Risk Minimization

Many results in machine learning used in practical settings can be grouped by the umbrella

term empirical risk minimization (ERM). While ERM encompasses a broad range of machine

learning models we will focus in this discussion on linear models. To describe this adequately

we will first describe the subfield of supervised learning and introduce important notation

that will be used in all chapters of the thesis.

Supervised Learning

In supervised learning we first assume we are given a set of data {(x(1), y(1)), . . . , (x(n), y(n))},

called a ‘training set’, and another {(x(1)′, y(1)
′
), . . . , (x(n)′, y(n)

′
)}, called a ‘test set’. Each

element x,x′ ∈ X (where usually X ⊆ Rd) is a vector of d real numbers usually referred to

as a ‘feature vector’ or an ‘input’, and each of the d elements are themselves called ‘features’.

The other elements y, y′ ∈ Y are referred to as ‘labels’. They may be integer-valued, in which

case this sort of learning is called ‘classification’ (either ‘binary’ if two-class or ‘multi-class’

otherwise), or real-valued, which is called ‘regression’. This distinction is made because often

the models that perform classification are quite different from those used for regression. The

goal in supervised learning is to learn a function g : X → Y , mapping from the features

x,x′ to the labels y, y′. In linear ERM, we restrict g to be a function of linear parameters:

g(x) := h(w>x + b) (where h may be a function that thresholds w>x + b to the interval

5



[0, 1], such as the sigmoidal function, or the identity function). Thus the problem of learning

g reduces to learning a set of parameters w and a so-called bias b. Note that it is possible

to incorporate the bias b into the parameter vector w by appending a 1 onto every x,x′

as an additional feature and setting w := [w, b]>. We therefore will assume b is always

incorporated into w in this way throughout the thesis. Finally, we will assume there exists

a true function f : X → Y that we are trying to match as closely as possible when learning

g. We will learn g using the training set and evaluate how accurate it is (or how close it is

to f) using the test set.

Overfitting. The reason we split the data into training and test sets is because, if we

learn g on the training set, the training set will often give us an overly optimistic view of the

accuracy of g: it will lead us to think that g is more accurate than it truly is. This is because

g was trained specifically to get the training set correct. In doing so, we may accidentally

learn a g that captures the noise of the training set, alongside the true mapping given by f .

Thus, to test this, we evaluate our learned function g on the test set to see if we overfit to

the training set. This problem of overfitting has long plagued machine learning algorithms,

and was especially prevalent in the early use of multi-layer perceptron neural networks in

the 1980s.

Loss and Regularization

In part, empirical risk minimization (ERM) techniques were derived in response to the

problems of overfitting. There are two essential components to ERM: (1) a loss function;

used to minimize the error of the mapping g : X → Y and (2) a regularization term; used to

prevent overfitting to the training set. Below we describe each of these components in more

detail and then form the generic optimization problem characteristic of ERM.

6



Table 1.1: Example loss functions.

loss equation type popular models

0-1 1y 6=w>x classification -
squared (y −w>x)2 regression [113, 168]
hinge max{0, 1− yw>x} classification [39]

logistic log(1 + e−yw
>x) classification [121]

exponential e−yw
>x classification [63]

Huber

{
1
2 (y −w>x)2 if |y −w>x| ≤ δ
δ|y −w>x| − 1

2δ
2 otherwise

regression [90]

Loss. A loss function ` : X × Y × G → R≥0 maps an input x, a label y and a function

g to a non-negative real number that describes how ‘accurately’ g(x) ‘predicts’ y (as g(x)

approaches y the loss `(x, y, g) should decrease, and vice-versa). Table 1.1 gives examples

of popular loss functions for linear ERM (i.e., g(x) := h(w>x) for a possibly non-linear

function h). The 0-1 loss is rarely used because of the fact that it is not differentiable at

0 and everwhere else has a derivative of 0. In regression, the squared loss is commonly

used but has the draw-back that it is very sensitive to outlier preditions. This means that

gradient-based optimization methods are heavily encouraged (by the size of the gradient) to

push these outlier predictions smaller, rather than to push somewhat incorrect predictions

to be (near) perfect. The Huber loss aims to remedy this by smoothly interpolating between

the squared loss when predictions w>x are close to the class label y, and the absolute loss

|y −w>x| when predictions are very different from the class label.

In classification, the hinge loss has been hugely influential in support vector machines (SVMs)

[39]. It naturally enforces a ‘large margin’ between the decision boundary and the data, which

tends to reduce overfitting. Given a binary classification problem between classes −1 and 1,

the logistic loss learns a classifier that reports the probability of a point being in the positive

class via 1/(1+exp(−w>x)). Finally, the exponential loss, used in boosting [63], is designed

to heavily penalize outlier predictions.

7



Table 1.2: Example regularization functions.

regularizer equation popular models

`0
∑

j 1wj 6=0 -

`1
∑

j |wj | [168, 111]

`22
∑

j w
2
j [113, 39]

`1/`2 mixed norm
∑

G∈G

√∑
j∈G w

2
j [13, 188, 106]

Laplacian
∑

k|k∈NN(i)(w
>x(i) −w>x(k))2 [15, 179]

Regularization. A regularizer r : G → R≥0 maps a function g to a non-negative real

number and describes how complex the function g is (or how much g is able to vary). The

larger r is the more complex g is. Table 1.2 describes popular regularization functions and

what they are used for. Probably the most popular regularizer is the squared `2 norm

(denoted `22 in the table). It tends to favor weight vectors that have all small weights,

heavily penalizing large weights just like the squared loss penalizing outlier predictions. If

instead we wanted to force some weights to be exactly 0 we could use the `0 regularizer.

It is however discontinous and thus rarely used. Instead, its convex envelope, the `1 norm

[10], is used instead. It tends to drive down weights that are unimportant for prediction,

making it popularly used for feature selection applications. The `1/`2 mixed norm enforces

group-sparsity. Specifically, imagine our weight vector is partitioned into groups where we

denote the set of all groups as G = {G1, G2, . . . , Gt}, and each Gi is a set of indices of the

weight vector (e.g., Gi = [35, 36, . . . , 45]). Then the `1/`2 first sums over each possible group

in G, and then, inside the square-root, sums over the squared elements of the weight vector

for a particular group. This will force the weights of certain groups (e.g., G3, G8, G9) to be

practically 0 (i.e., numerically equivalent to 0), creating group-based sparsity patterns. Thus

this is the group-level extension of the `1 norm. Finally the Laplacian norm enforces that

similar inputs have similar predictions. Specifically, let NN(i) return the set of indices for

inputs that are closest in Euclidean distance to x(i). This means that for every k ∈ NN(i),

the distance ‖x(i) − x(k)‖2 is smaller than for any of the remaining inputs in the dataset.

8



Thus the Laplacian norm is small so long as the prediction w>x(i) is close to the prediction

w>x(k), for all k ∈ NN(i).

Optimization problem

Given a loss function ` and a regularizer r, linear empirical risk minimization consists of

solving an optimization problem over a data sample which balances error reduction (through

the loss) and model complexity (through the regularizer) as follows:

min
g

n∑

i=1

`(y(i),w>x(i)) + λr(w).

Solving the optimization problem. There has been a wealth of research devoted to

solving the above optimization problem, recent work includes [142, 38], an excellent reference

is [160]. In large part, gradient-based methods such as conjugate gradient [122], the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [8], and stochastic gradient descent [25], are

used to solve the above optimization.

Selecting λ. In fact, this optimization problem is the Lagrangian of an equivalent con-

strained optimization problem and λ is referred to as a Lagrange multiplier (see [27] for

more details on the Lagrangian). Intuitively, λ controls the trade-off between model error

and complexity and is usually set by finding the value of λ that produces a model g with

minimum error on a validation set (this validation set is usually split off from the original

training set prior to training). This λ value can be found via grid search, random search

[19], or often more quickly via Bayesian optimization [158, 66].

9



1.2.2 Submodularity

Submodularity is a property of discrete functions over sets that has seen broad application

in machine learning [118, 12, 91, 155]. Consider a function f that maps from a discrete set

of items V to the reals R. The set V is often referred to as the ground set. For example, f

could be the price of a set of merchandise items, or the utility of a set of users for initiating

a viral marketing campaign.

To give a better intuition of the definition of submodularity, we begin by defining modularity.

Definition 1. Let V be the ground set of all items. A function h is called modular if it

satisfies the following property: h(A)=
∑

a∈A h(a) for any set A ⊆ V .

Effectively, a modular function is the equivalent of a linear function in discrete space, as

each item contributes linearly to the total value of the set. In fact, any modular function

assigns a fixed value to each item in the set (similar to a set of grocery items). Given this

definition, a submodular function f is, in a sense, less than a modular function in that the

value of a set A assigned by f is less than the sum of the values of the individual items:

Definition 2. Given ground set V , a function f is called submodular if it satisfies one of

the following equivalent definitions [131]:

f(A) ≤
∑

a∈A

f(a) ∀A ⊆ V

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ∀A,B ⊆ V

f(A ∪ k)− f(A) ≥ f(B ∪ k)− f(B) ∀A ⊆ B ⊆ V, ∀k ∈ V \B.

The last definition describes a ‘diminishing returns’ property of submodular functions: the

marginal change incurred by k is larger for a set A than for B, a superset of A. Intuitively,

10



f

f 0f(S)

|S| |S|

f 0(S)

|S|

h(S) h

Figure 1.1: Types of set functions. (Left.) A modular function, in which each element
contributes a certain value, independent of other elements. (Center.) A submodular set
function, notice that the diminishing marginal returns characteristic of submodular functions
becomes negative in this case. (Right.) A non-decreasing submodular set function.

a submodular function describes the cost of purchasing in bulk, where often the price of a

product decreases per unit weight as more is purchased at once.

Figure 1.1 shows examples of modular and submodular functions. A classic result given by

Nemhauser says that non-negative submodular functions that are also non-decreasing (Fig-

ure 1, Right.) are computationally efficient to approximately maximize [131]. Specifically,

imagine we wish to solve the following optimization problem

max
S⊆V

f ′(S) s.t., |S| ≤ k, (1.1)

where f ′ is a non-negative, non-decreasing submodular set function. Then, we can simply

select k elements using the following greedy algorithm: At any point, given we’ve already

selected a set A, the next element we select is j such that,

argmax
j∈V \A

f ′(A ∪ j)− f ′(A).

Then we have the following guarantee,

11



Theorem 1 ([131]). Given a non-negative, non-decreasing submodular set function f ′ and

let G be the set selected by the above greedy algorithm. Then we have that,

f ′(G) ≥ (1− e−1) max
S⊆V,|S|≤k

f ′(S)

This is a surprising result given that the optimization in eq. (1.1) is NP-hard. The intuition

here is that, for submodular functions, essentially it is crucial that the set items with the

largest marginal return are selected (the items selected first by the greedy algorithm). After

these are selected we are given a guarantee (via submodularity) that there isn’t some secret

element that if only we selected it we would have received a huge gain over what we already

selected. As long as we select the initial elements that provide us with the most gain, the

worse we can do, Nemhauser details, is select inputs that perform (1 − e−1) worse than

optimal.

12



Chapter 2

Cost: Explicitly optimizing the

accuracy/time-cost trade-off

Here is text of a conversation that no one in the field of machine learning (ML) has had with

a practitioner (P) at in an industrial setting:

• ML: “I have a state-of-the-art model for your problem. In fact, I know everything

about your problem.”

• P: “Well that’s great! So when can I see the results!”

• ML: “So, I should say that it takes roughly, give or take, 1 year to run.”

• P: “That’s no problem at all! We don’t expect things to change much in a year so we

can wait! Let’s start right away! Not that it matters!”

Of course this is extreme. But consider that companies often rely on methods that are both

accurate and fast. If a new web-search ranking algorithm is slightly better at ordering the

webpages that appear in the 100-200 ranks in a list of thousands of results, and requires

30 seconds per search query, that algorithm is decidedly worse than the original algorithm.

This is because web-search companies must return accurate results in under a few seconds.

13



In general, improvements in accuracy come at the cost of a slower algorithm. This may be

due to (a) improvements in the algorithm itself that require a lengthier evaluation procedure,

this sort of cost we call evaluation cost. Or (b) the cost of extracting specialized features,

which we call feature extraction cost. In web-search ranking, features may describe how

useful a webpage is, such as the click-through rate of the page (a relatively cheap feature) or

a classification about the overall quality of the webpage (a possibly very expensive feature).

Usually, the feature extraction cost dominates the runtime of a web-search ranking classifier.

As maximizing accuracy (or objective) and minimizing test-time cost are often diametrically

opposed there exists a trade-off between these two quantities. In this work we aim to design

models that best optimize this trade-off. We will refer to this general learning problem

as resource-efficient learning or budgeted learning. We will begin by framing the

accuracy/cost trade-off as an optimization problem, and formulate an exact expression for

the feature extraction cost. We will then briefly describe a prior model that replaces the

cost with a continuous relaxation and uses gradient-based optimization to solve for the

best parameters of the model. In contrast to this tricky procedure, we reformulate the

optimization as an approximately submodular set function optimization, which allows us to

speed-up the optimization while matching (and sometimes outperforming) the performance

of the original model.

2.1 Approximately Submodular Tree of Classifiers

In this chapter we introduce Approximately Submodular Tree of Classifiers (ASTC) a method

to carefully extract features only if they are useful towards correct classification and fall

within a pre-defined cost budget. We build a tree of classifiers; the internal nodes of the tree

14



are trained to send different types of inputs to different parts of the tree. This way, features

are specialized towards different subsets of inputs that they are good at predicting cheaply.

We build off the prior work of [184] who are the first to consider training a tree of cost-

sensitive classifiers. In it they form a joint optimization problem over all classifiers in the

entire tree and use block coordinate gradient descent to solve one node at a time. This means

that when we compute the gradient with respect to one classifier we must take into account

how changing it affects how data points are sent to all of its child nodes. This results

in an optimization procedure that is difficult to implement, and sensitive to convergence

thresholds. Their method achieves state-of-the-art trade-offs in accuracy-per-computational

cost. However, it still poses notable difficulties for practitioners trying to implement and

debug an algorithm in real-world settings.

We show that this complex optimization procedure can be entirely avoided. In fact, a cost-

sensitive tree can be learned entirely greedily, without loss in accuracy. The key to why the

greedy solution works is due to approximate submodularity [43, 77]. This is equivalent to

submodularity that is off by a (small) multiplicative factor. In our case, this multiplicative

factor comes in when two features do not independently contribute to a prediction, but

have small synergistic effects. Specifically, if the two features together improve prediction

by more than each feature individually, this is a non-submodular (or supermodular) effect.

For the most part, however, feature information is redundant and the greedy algorithm

achieves an approximation that is also near-optimal (similar to the submodular guarantee,

see Section 1.2.2).

We begin by introducing resource-efficient or budgeted learning, where we must take into

account costs incurred by the algorithm during classification. We will formulate the problem

as a general constrained optimization problem, and introduce our notation.

15



2.1.1 Resource-Efficient Learning

In this section we formalize the general setting of resource-efficient learning and introduce

our notation. The goal of resource-efficient learning is to design an optimization problem

that balances two goals that are usually opposing: (1) minimizing error and (2) minimizing

cost. Imagine we have functions that give the error and cost for a given modelM and data

D: e(M,D) (error of model M on data D) and c(M,D) (cost). We can then consider

solving the following optimization problem,

min
M

ED[e(M,D)] subject to ED[c(M,D)] ≤ B (2.1)

where ED is the expectation over dataset D and B is a predefined cost budget that the

model cannot exceed (in expectation). In practice we will use the sample average (over a

fixed dataset) to approximate these expectations∗.

While there are many examples of resource-efficient algorithms that trade-off time-cost and

accuracy, there is nothing that prevents algorithmic cost from being something unrelated to

time, such as (a) money necessary to perform medical procedures required for the model, or

(b) the amount of carbon required to generate the electricity to run the model, among many

other costs.

Notation

We are given an independent and identically distributed (i.i.d.) training dataset with inputs

and class labels D = {(x(i), y(i))}ni=1 = (X,y) ∈ R(n,d) × Yn (for instance ×Y = {−1, 1} for

binary classification or for regression: Y=R). For every input x(i), to obtain the value of the

∗As an aside we note that we could also consider a model in which the worst-case cost is minimized, as
opposed to the expected cost. We leave this direction for future work.

16



jth feature: x
(i)
j , we incur a cost of c(j), which is the feature extraction cost. Importantly,

once we extract this feature, we needn’t pay for it again as we may cache its value for future

use. Our goal is to learn a modelM that accurately predicts the class label y of an input x

and in doing so, M does not exceed budget B.

Let us make the optimization problem in eq. (2.1) more concrete. Consider learning a linear

model, i.e. M = β ∈ Rd, that classifies an input x using the rule: β>x. As is common

practice, to learn β, instead of minimizing the expected error ED[e(β,D)] = Ex,y[1y=β>x]

directly, consider minimizing a surrogate ‘loss’ `(·), which is an upper bound on the error:

Ex,y[`(y,β
>x)]. Any convex loss function can be used within our framework (see Section 1.2.1

for details on loss functions). Additionally, as we do not have access to the data distribution

directly, we estimate the expectation using our i.i.d. samples as such,

Ex,y[`(y,β
>x)] ≈ 1

n

n∑

i=1

`(y(i),β>x(i))

As for the cost in eq. (2.1) note that, if at an index j our model has zero weight; βj = 0,

then we needn’t extract feature j when applying the model at test time. Thus the cost of

our model is just the cost of every feature for which β has a non-zero weight. Formally then,

our goal is to solve the following optimization problem,

min
β

1

n

n∑

i=1

`(y(i),β>x(i)) subject to
∑

j:|β|>0

c(j) ≤ B, (2.2)

where
∑

j:|β|>0 c(j) sums over the (used) features with non-zero weight in β. This is the

simplest model for budgeted learning and one downside of it is that regardless of the input x,

it always selects the exact same set of features once it has been trained (thus the expectation

for the cost term can be removed). In the following we consider a model which instead uses

a tree of classifiers to select different features for different sets of inputs.

17



2.1.2 A Simple Example

Consider that we want to predict whether an email is a spam email or not†‡. For this

dataset each label y ∈ {−1, 1} (i.e., this is a classification task). Another way to write

the optimization problem (2.2) is as an empirical risk minimization (ERM) problem with

cost-weighted regularization (see Section 1.2.1 for more details on ERM):

min
β

1

n

n∑

i=1

`(y(i),β>x(i)) + λ
d∑

j=1

c(j)‖βj‖0 (2.3)

where the l0-norm ‖ · ‖0 in the above equation is defined as follows,

‖a‖0 =





0 if a = 0

1 otherwise.

(2.4)

Equation 2.3 can be shown to be the Lagrangian of the constrained optimization problem

in eq. 2.2, and thus have equivalent solutions (up to scaling of the Lagrange multiplier

λ). A popular loss function for classification that is fully-differentiable is the logistic loss:

`(y,β>x) :=log(1 + e−yβ
>x), which we will use here.

This unconstrained optimization problem is still difficult to solve because of the discontinuous

function ‖·‖0. Thus, we will replace it with its convex envelope [10], the `1-norm: ‖βj‖1 = |βj|

to yield our final optimization problem,

min
β

1

n

n∑

i=1

log(1 + e−yβ
>x) + λ

d∑

j=1

c(j)|βj| (2.5)

†For this task we will use the UCI Spambase dataset: https://archive.ics.uci.edu/ml/datasets/Spambase
‡As our spam dataset does not come with feature costs we will set the cost of each feature equal to 1.

18



Solving this optimization problem yields the classifier β∗, which can be used to classify inputs

x via the following rule: If (β∗)>x ≥ 0 we classify the point in class 1, otherwise we classify

the point in class −1.

0 5 10 15 20 25

-5

0

5

10

15

20
-5 0 5 10 15

-30

-25

-20

-15

-10

-5

0

0 5 10 15

-12

-10

-8

-6

-4

-2

0

2

4

6

8

cost: 53 cost: 31 cost: 4
training error: 7.3% training error: 9.1% training error: 19.2%

SPAM

�=5 �=50 �=500

Figure 2.1: A visualization of different classifiers learned from the resource-efficient learning
objective in equation (2.5).

We solve the above optimization problem for different values of λ ∈ {5, 50, 500} and show

the results in Figure 2.1. To visualize the results, we project the training set using principal

components analysis (PCA) [53] down to two dimensions (these are the points in Figure 2.1,

colored by their true classes). To visualize the decision boundary (the colored regions) we

sample points in a grid around the training set and project them back to the original space (a

57-dimensional space, as this is the original dimensionality of spam). Once done, we classify

these points into classes 1,−1 (red, blue) via the above rule. Figure 2.1 shows how the

decision boundary and the projected training set changes as λ changes. Initially, for λ= 5,

we classify the training set quite accurately (7.3% error), but do so with a large cost (53

or 57 features are active). As λ is increased to 500 learned classifier becomes less accurate

(19.2% error), but also more parsimonious, only using 4 of 57 features.

Table 2.1 shows the full results for many different λ. Depending on the application at hand,

the practitioner can tune λ to trade-off model accuracy for cost.

19



Table 2.1: Training error and cost results for solving equation (2.5) on the spam dataset,
under different regularization trade-offs λ.

λ 2.5 5 7.5 10 25 50 75 100 250 500
train err. 0.071 0.073 0.073 0.074 0.082 0.091 0.097 0.103 0.130 0.192

cost 54 53 51 48 39 31 27 25 13 4

2.1.3 Cost-Sensitive Tree of Classifiers (CSTC)

Recent work in resource-efficient learning [185] (CSTC) shows impressive results by learning

multiple classifiers from eq. (2.2) which are arranged in a tree (depth D) β1, . . . ,β2D−1. The

CSTC model is shown in figure 2.2 (throughout the paper we consider the linear classifier

version of CSTC). Each node vk is a classifier whose predictions x>βk for an input x are

thresholded by θk. The threshold decides whether to send x to the upper or lower child of

vk. An input continues through the tree in this way until arriving at a leaf node, which

predicts its label.

Combinatorial Optimization. There are two road-blocks to learning the CSTC classifiers

βk. First, because instances traverse different paths through the tree, the optimization is

a complex combinatorial problem. In [185], they fix this by probabilistic tree traversal.

Specifically, each classifier x>βk is trained using all instances, weighted by the probability

that instances reach vk. This probability is derived by squashing node predictions to the

range [0, 1] using the sigmoid function: σ(x>β) = 1/(1 + exp(−x>β)).

To make the optimization more amenable to gradient-based methods, [185] convert the

constrained optimization problem in eq. (2.2) to the Lagrange equivalent and minimize the

expected classifier loss plus the expected feature cost, where the expectation is taken over the

20



probability of an input reaching node vk,

min
βk

1

n

n∑

i=1

pki (y
(i) − x(i)>βk)2

︸ ︷︷ ︸
exp. squared loss

+ρ‖βk‖1 + λ E[C(βk)].︸ ︷︷ ︸
exp. feature cost

(2.6)

Here pki = σ(x(i)>βk) is the probability that instance x(i) traverses to vk and ρ is the

regularization constant to control overfitting. The last term is the expected feature cost of

βk,

E[C(βk)] =
∑

vl∈Pk
pl

[∑

j

c(j)

∥∥∥∥∥∥
∑

vk′∈πl
|βk′j |

∥∥∥∥∥∥
0

]
, (2.7)

The outer-most sum in the expectation (2.7) is over all leaf nodes Pk on paths that pass

through βk (see the white leaf nodes in Figure 2.3) and pl is the probability of any input

reaching such a leaf node vl ∈ Pk. The remaining terms describe the cost incurred for an

input traversing to that leaf node. CSTC makes the assumption that, once a feature is

extracted for an instance it is free for future requests for that instance. Therefore, CSTC

sums over all features j and if any classifier along the path to leaf node vl uses feature j, it

is paid for exactly once (πl is the set of nodes on the path to vl).

`0 norm and Differentiability. The second optimization road-block to CSTC is that

this feature cost term in eq. (2.7) is non-continuous, and is thus hard to optimize. Their

solution is to derive a continuous relaxation of the `0 norm using the mixed-norm [106]. The

final optimization is non-covex and not differentiable and the authors present a variational

approach, introducing auxiliary variables for both `0 and `1 norms so that the optimization

can be solved with cyclic block-coordinate descent.

21



v3

v4

v5

v6

v1

v2

v0

β1, θ1

β0, θ0

β2, θ2

β5

β6

β3

x�β0 > θ0
x�β1 ≤ θ1

x

x�β4

Figure 2.2: The CSTC tree (depth 3). Instances x are sent along a path through the tree
(e.g., in red) based on the predictions of node classifiers βk. If predictions are above a
threshold θk, x is sent to an upper child node, otherwise it is sent to a lower child. The leaf
nodes predict the class of x.

There are a number of practical difficulties that arise when using CSTC for a given dataset.

First, optimizing a non-leaf node in the CSTC tree affects all descendant nodes via the

instance probabilities pki . This slows the optimization and is difficult to implement. Second,

the optimization is sensitive to gradient learning rates and convergence thresholds, which

require careful tuning. In the same vein, selecting appropriate ranges for hyperparameters λ

and ρ may take repeated trial runs. Third, because CSTC needs to reoptimize all classifier

nodes the training time is non-trivial for large datasets, making hyperparameter tuning

on a validation set time-consuming. Additionally, the stationary point reached by block

coordinate descent is initialization dependent. These difficulties may serve as significant

barriers to entry, potentially preventing practitioners from using CSTC.

22



2.1.4 A Simplier Tree-Based Model

We propose a vastly simplified variant of the CSTC classifier, called Approximately Submod-

ular Tree of Classifiers (ASTC ). Instead of relaxing the expected cost term into a continuous

function, we reformulate the entire optimization as an approximately submodular set function

optimization problem.

ASTC nodes. We begin by considering an individual classifier βk in the CSTC tree,

optimized using eq. (2.6). If we ignore the effect of βk on descendant leaf nodes Pk and

previous nodes on its path πk, the feature cost changes:

E[C(βk)] =
∑

j

c(j)‖βkj ‖0. (2.8)

This combined with the loss term is simply a weighted classifier with cost-weighted `0-

regularization. We propose to greedily select features based on their performance/cost trade-

off and to build the tree of classifiers top-down, starting from the root. We will solve one

node at a time and set features ‘free’ that are used by parent nodes (as they need not be

extracted twice). Figure 2.3 shows a schematic of the difference between the optimization of

ASTC and the reoptimization of CSTC.

Resource-Constrained Submodular Optimization. An alternative way to look at the

optimization of a single CSTC node is as an optimization over sets of features.§ Let [d] =

{1, . . . , d} be the set of all features. Define the loss function for node vk, `k(A), over a set of

§Without loss of generality we assume from now on that for each feature vector xj ∈ Rn that ‖xj‖2 = 1,
for all j = 1, . . . , d, and that ‖y‖2 = 1. Additionally xj ,y also have zero mean.

23



features A ⊆ [d] as such,

`k(A) = min
βk

1

n

n∑

i=1

pki (yi − δA(x(i))>βk)2 (2.9)

where we treat probabilities pki as indicator weights: pki =1 if input x(i) is sent to vk, and to

0 otherwise. Define δA(x) as an element-wise feature indicator function that returns feature

xa if a ∈ A and 0 otherwise. Thus, `k is the squared loss of the optimal model using only

(a) inputs that reach vk and (b) the features in set A. Our goal is to select a set of features

A that have low cost, and simultaneously have a low optimal loss `k(A).

Certain problems in constrained set function optimization have very nice properties. Partic-

ularly, a class of set functions, called submodular set functions, have been shown to admit

simple near-optimal greedy algorithms [131]. For the resource-constrained case, each feature

(set item) j has a certain resource cost c(j), and we would like to ensure that the cost of

selected features fall under some resource budget B. For a submodular function s that is

non-decreasing and non-negative the resource-constrained set function optimization,

max
A⊆[d]

s(A) subject to
∑

j∈A

c(j) ≤ B (2.10)

can be solved near-optimally by greedily selecting set elements j ∈ [d] that maximize s as

such,

gt = argmax
j∈[d]

[
s(Gt−1 ∪ j)− s(Gt−1)

c(j)

]
. (2.11)

Where we define the greedy ordering Gt−1 = (g1, g2, . . . , gt−1). To find gt we evaluate all

remaining set elements a ∈ [d] \ Gt−1 and pick the element gt = ĵ for which s(Gt−1 ∪ ĵ)

increases the most over s(Gt−1) per cost. Let G〈L〉 = (g1, . . . , gT ) be the largest feasible

24



greedy set, having total cost L (i.e.,
∑T

t=1 c(gt) = L ≤ B and L+ c(gT+1) > B). It has been

proved [161] that for any non-decreasing and non-negative submodular function s and some

budget B, eq. (2.11) gives an approximation ratio of (1 − e−1) ≈ 0.63 with respect to the

optimal set with cost L ≤ B. Call this set C∗〈L〉. Then, s(G〈L〉) ≥ (1 − e−1)s(C∗〈L〉) for the

resource-constrained optimization (2.10).

v0

v1

v3

v4

v2

(β2, θ2)
v5

v6

v0

v1

v2

CSTC optimization ASTC optimization

β2 = (X�X)−1X�y

θ2

Figure 2.3: The optimization schemes of CSTC and ASTC. Left: When optimizing the
classifier and threshold of node v2, (β2, θ2) in CSTC, it affects all of the descendant nodes
(highlighted in blue). If the depth of the tree is large (i.e., larger than 3), this results in a
complex and expensive gradient computation. Right: ASTC on the other hand optimizes
each node greedily using the familiar ordinary least squares closed form solution (shown
above). θ2 is set by binary search to send half of the inputs to each child node.

2.1.5 Greedy Optimization

In this section we demonstrate that optimizing a single CSTC node, and hence the CSTC

tree, greedily is approximately submodular. We begin by introducing a modification to the

25



set function (2.9). We then connect this to the approximation ratio of the greedy cost-aware

algorithm eq. (2.11), demonstrating that it produces near-optimal solutions. The resulting

optimization is very simple to implement and is described in Algorithm 1.

Approximate Submodularity. To make `k amenable to resource-constrained set function

optimization (2.10) we convert the loss minimization problem into an equivalent label ‘fit’

maximization problem. Define the set function zk,

zk(A) =
Var(y; pk)− `k(A)

Var(y; pk)
(2.12)

where Var(y; pk) =
∑

i p
k
i (y

(i)− ȳ)2 is the variance of the training label vector y multiplied by

0/1 probabilities pki (ȳ is the mean predictor). It is straightforward to show that maximizing

zk(·) is equivalent to minimizing `k. In fact, the following approximation guarantees hold for

zk(·) constructed from a wide range of loss functions (via a modification of [77]). As we are

interested in developing a new method for CSTC training, we focus purely on the squared

loss. Note that zk(·) is always non-negative (as the mean predictor is a worse training set

predictor than a predictor using any one feature, assuming that the feature takes on more

than one value). To see that it is also non-decreasing note that zk(·) is precisely the squared

multiple correlation R2 [49], [98], which is known to be non-decreasing.

If the features are orthogonal then zk(·) is submodular [108]. However, if this is not the

case it can be shown that zk(·) is approximately submodular and has a submodularity ratio,

defined as such:

Definition 3 ([43, 77]). Any non-negative set function z(·) has a submodularity ratio γ

as follows,

∑

s∈S

[
z(L ∪ {s})− z(L)

]
≥ γ

[
z(L ∪ S)− z(L)

]
,

26



The submodularity ratio ranges from 0 (z(·) is not submodular) to 1 (z(·) is submodular)

and measures how close a function z(·) is to being submodular.

The submodularity ratio in general is non-trivial to compute. However, we can take ad-

vantage of prior work [43] which shows that the submodularity ratio of zk (2.12) is further

bounded. Define CkA as the covariance matrix of X̃, where x̃(i) = pki δA(x(i)) (inputs weighted

by the probability of reaching vk, using only the features in A). It has been shown [43] that

for zk(·), it holds that γ ≥ λmin(CkA), where λmin(CkA) is the minimum eigenvalue of CkA.

Approximation Ratio. As in the submodular case, we can optimize zk(·) subject to the

resource constraint that the cost of selected features must total less than a resource budget B.

This optimization can be done greedily using the rule described in eq. (2.11). The following

theorem—which is proved for any non-decreasing, non-negative, approximately submodular

set function [77]—gives an approximation ratio for this greedy rule.

Theorem 2 ([77]). The greedy algorithm selects an ordering G such that,

zk(G〈L〉) > (1− e−γ)zk(S∗〈L〉)

where G〈L〉 = (g1, g2, . . . , gT ) is the greedy sequence truncated at cost L, such that
∑T

i=1 c(gi) =

L ≤ B and S∗〈L〉 is the set of optimal features having cost L.

Thus, the approximation ratio depends directly on the submodularity ratio of zk(·). For

each node in the CSTC tree we greedily select features using the rule described in (2.11). If

we are not at the root node, we set the cost of features used by the parent of vk to 0, and

select them immediately (as we have already paid their cost). We fix a new-feature budget

B—identical for each node in the tree—and then greedily select new features up to cost B

for each node. By setting probabilities pki to 0 or 1 depending on if x(i) traverses to vk,

27



learning each node is like solving a unique approximately submodular optimization problem,

using only the inputs sent to that node. Finally, we set node thresholds θk to send half of

the training inputs to each child node.

We call our approach Approximately Submodular Tree of Classifiers (ASTC), which is shown

in Algorithm 1. The optimization is much simpler than CSTC.

Algorithm 1 ASTC in pseudo-code.

1: Inputs: {X,y}; tree depth D; node budget B, costs c
2: Set the initial costs c1 = c
3: for k = 1 to 2D − 1 nodes do
4: G = ∅
5: while budget not exceeded:

∑
g∈G c

k(g) ≤ B do
6: Select feature j ∈ [d] via eq. (2.11)
7: Add to node-specific features: G = G ∪ {j}
8: end while
9: Solve βk using weighted ordinary least squares
10: if vk is not a leaf node, with children vl and vu then
11: Set child probabilities:

pui =

{
1 if pki > θk

0 otherwise
pli =

{
1 if pki ≤ θk

0 otherwise

12: Set child feature costs: cu = cl = ck

13: Free used features: cu(G) = cl(G) = 0
14: end if
15: end for
16: Return {β1,β2, . . .β2D−1}

2.1.6 Fast Selection via QR-Decomposition

Equation (2.11) requires solving an ordinary least squares problem, eq. (2.9), when selecting

the feature that improves zk(·) the most. This requires a matrix inversion which typically

takes O
(
d3
)

time. However, because we only consider selecting one feature at a time we can

avoid the inversion for zk(·) altogether using the QR decomposition. Let Gt = (g1, g2, . . . , gt)

28



be our current set of greedily-selected features. For simplicity let XGt = δGt(X), the data

masked so that only features in Gt are non-zero. Computing zk(·) requires computing the

weighted squared loss, eq. (2.9), which, after the QR decomposition requires no inverse.

Redefine x(i) =

√
pki
n

x(i) and y(i) =

√
pki
n
y(i), then we have,

`k(Gt) = min
βk

(y −XGtβ
k)>(y −XGtβ

k). (2.13)

Let XGt = QR be the QR decomposition of XGt . Plugging in this decomposition, taking

the gradient of `k(Gt) with respect to βk, and solving at 0 yields [82],

βk = R−1Q>y

The squared loss for the optimal βk is,

`k(Gt) = (y −QRR−1Q>y)>(y −QRR−1Q>y)

= (y −QQ>y)>(y −QQ>y)

= y>y − y>QQ>y. (2.14)

Imagine we have extracted t features and we are considering selecting a new feature a. The

immediate approach would be to recompute Q including this feature and then recompute

the squared loss (2.14). However, computing qt+1 (the column corresponding to feature a)

can be done incrementally using the Gram–Schmidt process:

qt+1 =
Xa −

∑t
j=1(X

>
a qj)qj

‖Xa −
∑t

j=1(X
>
a qj)qj‖2

=
Xa −QQ>Xa

‖Xa −QQ>Xa‖2

29



where q1 = Xg1/‖Xg1‖2 (recall g1 is the first greedily-selected feature). Finally, in order to

select the best next feature using eq. (2.11), for each feature a we must compute,

zk(Gt ∪ a)− zk(Gt)

c(a)
=
−`k(Gt ∪ a) + `k(Gt)

Var(y; pk)c(a)

=
y>Q1:t+1Q

>
1:t+1y − y>QQ>y

Var(y; pk)c(a)

=
(q>t+1y)2

Var(y; pk)c(a)
(2.15)

where Q1:t+1 =
[
Q,qt+1

]
. The first two equalities follow from the definitions of zk(·) and

`k(·). The third equality follows because Q and Q1:t+1 are orthogonal matrices.

We can compute all of the possible qt+1 columns, corresponding to all of the remaining

features a in parallel, call this matrix Qremain. Then we can compute eq. (2.15) vector-wise

on Qremain and select the feature with the largest corresponding value of zk(·).

Complexity. Computing the ordinary least squares solution the naive way for the (t+1)th

feature: (X>X)−1X>y requires O
(
n(t+1)2 + (t+1)3

)
for the covariance multiplication and

inversion. This must be done d−t times to compute zk(·) for every remaining feature. Using

the QR decomposition, computing qt+1 requires O
(
nt
)

time and computing eq. (2.15) takes

O
(
n
)

time. As before, this must be done d− t times for all remaining features, but as

mentioned above both steps can be done in parallel.

2.1.7 Experimental Results

In this section, we evaluate our approach on a real-world feature-cost sensitive ranking

dataset: the Yahoo! Learning to Rank Challenge dataset. We begin by describing the

30



Table 2.2: Training speed-up of ASTC over CSTC as a function of tree budgets on Yahoo!
and Forest datasets.

Yahoo! Forest

Cost Budgets 10 52 86 169 468 800 1495 3 5 8 13 23 50

ASTC 119x 52x 41x 21x 15x 9.2x 6.6x 8.4x 7.0x 6.3x 4.9x 3.1x 1.4x
ASTC, soft 121x 48x 46x 18x 15x 8.2x 6.4x 8.0x 6.4x 5.7x 4.5x 2.8x 1.5x

Table 2.3: Training speed-up of ASTC over CSTC for CIFAR and MiniBooNE datasets.

CIFAR MiniBooNE

Cost Budgets 9 24 76 180 239 4 5 12 14 18 33 47

ASTC 5.6x 2.3x 0.68x 0.25x 0.14x 7.4x 7.9x 5.5x 5.2x 4.1x 3.1x 2.0x
ASTC, soft 5.3x 2.3x 0.62x 0.27x 0.13x 7.2x 6.2x 5.9x 4.2x 4.3x 2.5x 1.7x

dataset and show Precision@5 per cost compared against CSTC [185] and another cost-

sensitive baseline. We then present results on a diverse set of non-cost sensitive datasets,

demonstrating the flexibility of our approach. For all datasets we evaluate the training times

of our approach compared to CSTC for varying tree budgets.

Yahoo! Learning to Rank. To judge how well our approach performs in a particular

real-world setting, we test ASTC on the Yahoo! Learning to Rank Challenge data set

[35]. The dataset consists of 473, 134 web documents and 19, 944 queries. Each input x(i)

is a query-document pair containing 519 features, each with extraction costs in the set

{1, 5, 20, 50, 100, 150, 200}. The unit of cost is in weak-learner evaluations (i.e., the most

expensive feature takes time equivalent to 200 weak-learner evaluations). We remove the

mean and normalize the features by their `2 norm, as is assumed by the submodularity

ratio bound analysis. We use the Precision@5 metric, which is often used for binary ranking

datasets.

Figure 2.4 compares the test Precision@5 of CSTC with the greedy algorithm described in

Algorithm 1 (ASTC ). For both algorithms we set a maximum tree depth of 5. We also

compare against setting the probabilities pki using the sigmoid function σ(x>βk) = 1/(1 +

31



te
st

 e
rr

or
0 500 1000 1500

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

Pr
ec

is
io

n 
@

 5

ASTC
ASTC, soft

rcost-weighted l1-classifier

0 10 20 30 40 50
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

 

 

0 50 100 150 200 250
0.32

0.34

0.36

0.38

0.4

0.42

0.44

 

 

te
st

 e
rr

or

feature cost

CIFAR

Yahoo! Forest

0 10 20 30 40 50
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

 

 
MiniBooNE

feature cost

te
st

 e
rr

or

(h
ig

he
r i

s 
be

tte
r)

CSTC

Figure 2.4: Plot of ASTC, CSTC, and a cost-sensitive baseline on on real-world feature-cost
sensitive dataset (Yahoo!) and three non-cost sensitive datasets (Forest, CIFAR, Mini-
BooNE). ASTC demonstrates roughly the same error/cost trade-off as CSTC, sometime
improving upon CSTC. For Yahoo! circles mark the CSTC points that are used for training
time comparison, otherwise, all points are compared.

32



exp(−x>βk)) on the node predictions as is done by CSTC (ASTC, soft). Specifically, the

probability of an input x traversing from parent node vk to its upper child vu is σ(x>βk−θk)

and to its lower child vl is 1−σ(x>βk−θk). Thus, the probability of x reaching node vk from

the root is the product of all such parent-child probabilities from the root to vk. Unlike CSTC,

we disregard the effect βk has on descendant node probabilities (see Figure 2). Finally, we

also compare against a single cost-weighted `1-regularized classifier.

We note that the ASTC methods perform just as good, and sometimes slightly better, than

state-of-the-art CSTC. All of the techniques perform better than the single `1 classifier, as

it must extract features that perform well for all instances. CSTC and ASTC instead may

select a small number of expert features to classify small subsets of test inputs.

Forest, CIFAR, MiniBooNE. We evaluate ASTC on three very different non-cost sen-

sitive datasets in tree type and image classification (Forest, CIFAR), as well as particle

identification (MiniBooNE ). As the feature extraction costs are unknown we set the cost

of each feature α to cα = 1. As before, ASTC is able to improve upon the performance of

CSTC.

Training Time Speed-up. Tables 2.2 and 2.3 show the speed-up of our approaches over

CSTC for various tree budgets. For a fair speed comparison, we first learn a CSTC tree for

different values of λ, which controls the allowed feature extraction cost (the timed settings

on the Yahoo! dataset are marked with black circles on Figure 2.4, whereas all points are

timed for the other datasets). We then determine the cost of unique features extracted at

each node in the learned CSTC tree. We set these unique feature costs as individual node

budgets Bk for ASTC methods and greedily learn tree features until reaching the budget for

each node. We note that on the real-world feature-cost sensitive dataset Yahoo! the ASTC

methods are consistently faster than CSTC. Of the remaining datasets ASTC is faster in

33



all settings except for three parameter settings on CIFAR. One possible explanation for

the reduced speed-ups is that the training set of these datasets are much smaller (Forest:

n=36, 603 d=54; CIFAR: n=19, 761 d=400; MiniBooNE: n=45, 523 d=50) than Yahoo!

(n=141, 397 and d=519). Thus, the speed-ups are not as pronounced and the small, higher

dimensionality CIFAR dataset trains slightly slower than CSTC.

2.2 Related Work

2.2.1 Cost-Sensitive Regularization

Prior to CSTC [185], a natural approach to controlling feature resource cost is to use `1-

regularization to obtain a sparse set of features [60]. One downside of these approaches is

that certain inputs may only require a small number of cheap features to compute, while

other inputs may require a number of expensive features.

2.2.2 Cascades

Perhaps the most famous resource efficient model is the Adaboost [63] cascade by [174].

The cascade consists of stages of Adaboost classifiers that either ‘reject’ or ‘pass on’ inputs

for further classification. The face detection cascade is designed so that earlier stages are

inexpensive and can eliminate the majority of inputs as ‘non-face’ image patches. [26] design

SoftCascade which uses information from multiple previous stages, and how well an instance

passes each stage to decide whether to eliminate inputs from the cascade. After these works,

there was an explosing of interest in cascade classifiers [112, 145, 138, 35]. In all of these

works, earlier classifiers are cheap and simple classifiers (designed to easily eliminate inputs)

34



while later classifiers are expensive and complex (designed to carefully sift out negative inputs

to discard). As powerful as the cascade is, its primary strength is dealing with imbalanced

datasets (in which negative examples vastly outnumber positive examples). However, it is

non-trivial to design cascades for multi-class classification.

2.2.3 Tree-Based Models

This scenario motivated the development of CSTC [185]. Prior to CSTC, there has been

a number of works towards efficient classification within tree-based models, including [46],

who speed up training and testing time required for label trees [17] for fast object detection.

[52] construct resource-efficient decision trees by combining feature cost with its mutual

information with the classification label. Recently, [129] construct feature cost sensitive

random forests based on minimizing the worst-case (maximum) cost-per-impurity of each

split in the tree.

2.2.4 Decision-Making Schemes

There are a number of models that use decision-making schemes to speed-up test-time clas-

sification. [30] uses a Markov decision process (MDP), trained with on-policy reinforcement

learning to adaptively select features for each instance. [172] consider learning a set of sequen-

tial multi-class decisions, inspired by the solution of an MDP. Follow-up work [176] derives

a tight convex surrogate to the original optimization and derives a linear program to solve

the optimization efficiently. On the other hand there are a number of works that formulate

the problem as a partially-observable Markov decision process (POMDP) [151, 97, 99, 65]

and select features based on their information gain. [83] use imitation learning from a coach

35



to reduce the regret for selecting features online that are both cost-effective and accurate.

[101] design an object detection system that maximizes average precision per cost using a

reinforcement learning strategy. Weiss & Taskar design a feature cost sensitive model for

structured prediction tasks such as articulated pose estimation and optical character recog-

nition [182]. Their method uses Q-learning [178] to predict the value of individual features

at test time. Finally, Wang et al., formulate the feature selection decision problem as a di-

rected acyclic graph structure and use dynamic programming to solve the budgeted learning

problem [177].

2.2.5 Submodularity

Feature selection has been tackled by a number of submodular optimization papers [108, 43,

42, 109]. Surprisingly, until recently, there were relatively few papers addressing resource-

efficient learning. Recently [77] introduce SpeedBoost which greedily learns weak learners

that are cost-effective using (orthogonal) matching pursuit. Work last year [190] considers

an online setting in which a learner can purchase features in ‘rounds’. Perhaps most similar

to our work is work [74] which learns a policy to adaptively select features to optimize a

set function. Differently, their work assumes the set function is fully submodular and every

policy action only selects a single element (feature). To our knowledge, this work is the first

tree-based model to tackle resource-efficient learning using approximate submodularity.

36



2.3 Conclusion

We have introduced Approximately Submodular Tree of Classifiers (ASTC), making use of

recent developments in approximate submodular optimization to develop a practical near-

optimal greedy method for feature-cost sensitive learning. The resulting optimization yields

an efficient objective update scheme that allows one to train ASTC up to 120 times faster

than CSTC.

One limitation of this approach is that the approximation guarantee does not hold if features

are preprocessed. Specifically, for web-search ranking, it is common to first perform gradient

boosting to generate a set of limited-depth decision trees. The predictions of these decision

trees can then be used as features (this is demonstrated in the non-linear version of CSTC

[184]). Despite the lack of approximation guarantees, adding this non-linearity may improve

the accuracy of ASTC.

Additionally, the cost of a set of features may be less than the sum of their individual

costs. Instead, groups of features may be ‘discounted’. One common example are feature

descriptors for object detection (i.e., HOG [41] and SIFT [117] features). Each descriptor

can be thought of as a group of features. Once a single feature from the group is selected

for making a classification, the remaining features in the group become ‘free’, as they were

already computed for the descriptor. Extending ASTC to model these features would notably

widen the scope of the approach.

Overall, by presenting a simple, efficient, near-optimal method for feature-cost sensitive

learning we hope to bridge the gap between machine learning models designed for real-world

industrial settings and those implemented in such settings. Without the need for specialized

tuning and with faster training we truly believe our approach can be rapidly incorporated into

37



the ever-increasing number of large-scale machine learning applications that could benefit

the most.

38



Chapter 3

Space: A model for compressing the

k-nearest neighbor rule

Low-memory computing devices are pervasive. Indeed, mobile phones, tablets, electronic-

reading devices, smart watches, augmented and virtual reality glasses, are increasingly

computationally-capable. The ability to collect and learn from data tailored to such de-

vices is an exciting frontier for machine learning.

It is easy to imagine potential applications for machine learning in these contexts:

1. In wildlife mapping it could be extremely useful to have multiple unmanned aerial

vehicles (UAVs) that are able to classify whether or not they may have taken images

of wildlife in a nature reserve.

2. In developing countries, in places where doctors are scarce and internet is non-existent,

it could be useful to have health workers go door-to-door with tablets to collect health

information and classify individuals as likely having an illness or not. This also has the

benefit that once the classification is made, the sensitive personal data can be deleted

(more on this in the next chapter).

39



3. As civic infrastructure and buildings age, it may prove useful to attach small computing

devices that measure various aspects of material stress and wear. These devices could

also classify whether a structure is in danger of collapsing in the near future.

In all of these scenarios, running classification on the device, as opposed to repeatedly sending

data back to a centralized server and retrieving a classification, is crucial. This is because

communication often requires significant power (e.g., communicating imagery in example 1

may severely limit search time, and in example 3 may require sensors to be replaced often

or even overheat) or communication may not even be possible (as in example 2).

If we wish to run machine learning algorithms on mobile devices, it is imperative to address

the primary constraint of such devices: often, to improve mobility, they have highly-restricted

memory sizes. Thus the question is: How can we design machine learning models that are as

accurate as they are compact? Critically, there is a natural trade-off that arises as shrinking

a model usually comes at the price of model expressibility. The goal of this chapter is

to devise a technique to directly optimize this trade-off. One surprising observation we will

make is that compressing a machine learning model can sometimes improve its generalization

accuracy. This is because model-shrinking can act as a form of regularization, biasing the

model at the expense of flexibility.

We will begin by considering the k-nearest neighbor (kNN) model; a classification technique

that is widely used in practice, but naturally requires a non-trivial amount of memory (i.e., it

must store the entire training set). To reduce the model size of kNN we propose to learn an

entirely new ‘compressed’ training set that is optimized to closely approximate the original

training set. We formalize this compression procedure as an optimization problem using a

continuous relaxation of the 1-nearest neighbor rule first introduced by Hinton and Roweis,

2002 [86]. This allows us to directly learn a new training set using gradient descent. We

40



a-closest 
labeled 
inputs

unlabeled

1-Nearest Neighbor Decision Rule
class 1
class 2
class 3

classificationnew test input

k

k

Figure 3.1: The k-nearest neighbor rule first described by Cover & Hart [40], in which a test
point is classified by the majority class of its nearest neighbor in the training set.

show that the learned compressed training sets can achieve the same (and sometimes even

better) generalization error as the full training set, at a fraction of the size.

3.1 Stochastic Neighbor Compression

The k-nearest neighbors (kNN) decision rule classifies an unlabeled input by the majority

label of its k nearest training inputs. Figure 3.1 shows an example k-nearest neighbor classi-

fication. It is one of the oldest and most intuitive classification algorithms [40]. Nevertheless,

when paired with domain knowledge [16, 153] or learned distance metrics [73, 44, 181], it

is highly competitive in many machine learning applications [171]. As machine learning al-

gorithms are increasingly used in application settings, e.g. recommender systems [147], the

kNN rule is particularly attractive because its predictions are easily explained.

An important drawback of kNN is its slow test-time performance. Since it must compute

the distances between the test input and all elements in the training set, it takes O(dn) with

respect to the data dimensionality d and the training set size n. Similarly, space requirements

41



input data after subsampling after optimization

inputs removed
inputs

Figure 3.2: An illustration of the individual stages of SNC. The input data (left) is first sub-
sampled uniformly (middle) and then optimized to minimize leave-one-out nearest neighbor
error (right).

are also O(dn), as the entire training set needs to be stored. This high time and space

complexity makes computing the decision rule impracticable for time critical applications

and large-scale datasets—a problem that is likely to remain relevant as datasets continue to

grow.

There are three high-level approaches for speeding up the testing. First is to reduce the

number of distance computations to some polylogarithmic function in n, through clever tree

data structures, such as cover/ball trees [21, 133], or hashing functions [72, 4]. Although

they often yield impressive speed ups, these methods still store the entire training set and

their performance tends to deteriorate with increasing (intrinsic) data dimensionality. The

second approach is to reduce the data dimensionality d through supervised dimensionality

reduction, e.g. large margin nearest neighbors (LMNN) [180], which is particularly effective

in combination with tree data structures. The third approach is to compress the training set

by reducing the number of data inputs n. Prior works often involve data set condensing (or

thinning) [81, 5], which subsample the training data according to clever rules and remove

redundant inputs. Alternative algorithms shrink the data to few cluster centers [32, 103],

42



which can be optimized with multi-phase initialization procedures [45, 115]. Others learn

prototypes by ‘softening’ the kNN decision rule at test-time [20], preventing the use of tree

data structures.

In this chapter, we introduce a novel approach for data set compression, Stochastic Neighbor

Compression (SNC), which falls into the third category of algorithms. SNC compresses the

training data by learning a new set of m synthetic reference vectors, where m�n. Figure

3.2 illustrates our algorithm schematically. We initialize our compressed set with a small

subset of the training set, sampled uniformly at random. We then optimize the position of

these inputs directly to minimize the classification error on the training set. To this end, we

relax the kNN rule into a stochastic neighborhood framework [73, 86], which allows us to

approximate the classification error of the training set with a continuous and differentiable

function.

We are making four novel contributions: 1. we introduce and derive SNC, a novel data

compression algorithm for kNN; 2. we demonstrate the efficacy of SNC on seven real world

data sets and show that on all tasks it outperforms existing algorithms for data set reduction

and on 4/7 data sets kNN on the full training set obtains even higher error rates than kNN

with SNC—at a staggeringly low compression ratio of only 4%; 3. We conjecture and

observe empirically that SNC substantially increases robustness of kNN to (label) noise; 4.

We demonstrate that SNC works well alongside existing algorithms — such as ball trees,

hashing, and dimensionality reduction — that speed up nearest neighbor classification. In

fact, it adds impressive speed ups of one order of magnitude on top of the existing state-of-

the-art.

43



3.1.1 The Stochastic Neighborhood

We denote the training data to be a set of input vectors {x(1), . . . ,x(n)}⊂Rd, arranged as

columns in matrix X∈Rd×n, and corresponding labels {y(1), . . . , y(n)}⊆Y , where Y contains

some finite number of classes.¶

Our approach draws from two ideas in machine learning that use stochastic neighborhood

distributions: stochastic neighborhood embeddings [86], and neighborhood components anal-

ysis [73]. Here, we describe both in some detail.

Stochastic Neighborhood Embedding (SNE) [86] is an algorithm to visualize a given

data set by learning a low-dimensional embedding in 2d or 3d. For two points x(i) and x(j),

we define the dissimilarity measure d2ij; it is commonly an element of the Gaussian kernel

d2ij = γ2i ‖x(i) − x(j)‖2, where γ2i is the precision of the Gaussian distribution. The authors

define a stochastic neighborhood, which captures the neighborhood relation between inputs

x(i) and x(j) through probability pij of the event that x(i) is assigned x(j) as its nearest

neighbor,

pij =
exp(−d2ij)∑n
k=1 exp (−d2ik)

. (3.1)

The low dimensional embedding is optimized to approximately preserve the stochastic neigh-

borhood distribution of the input data. More precisely, SNE minimizes the KL-divergence

between the original (high dimensional) stochastic neighborhoods and the induced neigh-

borhoods in the low dimensional space. This approach was recently further refined [173] to

yield improved visualizations by substituting the local Gaussian distributions with Student

t-distributions in the input space.

¶Throughout this manuscript we will abuse notation slightly and treat X as a set of column vectors or
matrix interchangeably (i.e. we allow the notation x(i)∈X but also X>y).

44



Neighborhood Components Analysis (NCA) [73] is an algorithm that uses stochastic

neighborhoods to learn a Mahalanobis pseudo-metric, dij = ‖A(x(i) − x(j))‖. This metric

is parameterized by a matrix A and is incorporated into the stochastic neighborhood in

(3.1). In contrast to SNE, NCA is a supervised learning algorithm and optimizes this metric

explicitly for kNN. To improve the kNN accuracy, it maximizes an approximation of the

leave-one-out (LOO) training accuracy of the 1 stochastic neighbor rule. Under this rule, an

input x(i) with label y(i) is classified correctly if its nearest neighbor is any x(j) 6= x(i) from

the same class (y(j) =y(i)). The probability of this event can be stated as

pi =
∑

j:y(j)=y(i)

pij, (3.2)

where we define pii=0. NCA learns A by maximizing (3.2) over all inputs x(i)∈X.

3.1.2 How to Compress a Dataset

In this section, we describe our approach, called Stochastic Neighbor Compression (SNC).

SNC is inspired by the seminal works from Section 3.1.1 and uses a stochastic neighborhood

distribution to reduce the training set, with n data inputs, into a compressed set with m

vectors, where m � n. This much smaller compressed set is then used as a reference set

during kNN testing. For standard kNN implementations, the test time and space complexity

reduce from O
(
nd
)

to only O
(
md
)
.

Stochastic Reference. We learn a new compressed set of reference vectors Z = [z(1), . . . , z(m)]

with labels ŷ(1), . . . , ŷ(m). This data set is initialized by uniformly subsampling m vectors

from X, while maintaining their exact labels. The labels ŷ(i) will be fixed throughout,

whereas the vectors Z will be optimized. Let us define the probability that input x(i) is

45



assigned z(j) as nearest reference vector as

pij =
exp(−γ2‖x(i) − z(j)‖2)∑m
k=1 exp(−γ2‖x(i) − z(k)‖2) . (3.3)

Input x(i) is classified correctly if and only if it is paired with a reference vector from the

same class ŷ(j) =y(i). The probability of this event is precisely given by (3.2).

Objective. Ideally, we want pi = 1 for all x(i) ∈X, corresponding to 100% classification

accuracy of X on Z. It is straight-forward to see that the KL-divergence [73] between this

“perfect” distribution and pi is

KL(1||pi) = − log(pi). (3.4)

Our goal is to position the compressed set Z such that as many training inputs as possible

are classified correctly. In other words, we need pi to be close to 1 for all inputs x(i) ∈ X.

Hence, we define our loss function to sum over the KL-divergences (3.4) for all inputs in X,

L(Z) = −
n∑

i=1

log(pi) (3.5)

Gradient with respect to Z. In order to state the gradients in simpler form, we first

define two additional matrices Q,P ∈ Rn×m as

[Q]ij = (δy(i),y(j) − pi), [P]ij =
pij
pi
.

Here, δy(i),y(j) ∈ {0, 1} denotes the Dirac Delta function and takes on value 1 if and only if

y(i) = y(j). Although we omit the details of the derivation, this notation allows us to state

46



Algorithm 2 SNC in pseudo-code.

1: Inputs: {X,y}; new (compressed) data set size m
2: Initialize Z by class-based sampling m inputs from X
3: Learn Z with conj. gradient descent, eq. (3.6)
4: Return Z

the gradient of L with respect to the compressed set Z entirely in matrix operations,

∂L
∂Z

= 2

(
X
(
Q ◦P

)
− Z∆

((
Q ◦P

)>
1n

))
, (3.6)

where ◦ is the Hadamard (element-wise) product, 1n is the n×1 vector of all ones, and ∆(·)

signifies placing a vector along the diagonal of an otherwise 0 matrix.

Computational complexity. The computational complexity of each gradient descent

iteration with respect to Z costs O
(
nm
)

to compute (Q◦P), O
(
dnm

)
to compute X(Q◦P),

and O
(
dm2

)
to compute Z∆((Q◦P)>1n), resulting in O

(
dmn

)
overall complexity.

Implementation. We optimize Z by minimizing (3.5) with conjugate gradient descent (we

use a freely-available Matlab implementation∗) and provide our implementation of SNC as

open source available for download at http://tinyurl.com/msovcfu. The individual steps

of the SNC approach are described in Algorithm 2.

∗http://tinyurl.com/minimize-m

47

http://tinyurl.com/msovcfu
http://tinyurl.com/minimize-m


3.1.3 Metric Learning Extension

Drawing directly on ideas proposed in NCA [73], for additional flexibility, we can extend

(3.3) with an affine feature transformation matrix A,

pi =
∑

j:ŷ(j)=y(i)

exp (−‖A(x(i) − z(j))‖2)∑m
k=1 exp(−‖A(x(i) − z(k))‖2) . (3.7)

Let us denote the corresponding loss function as LA. The resulting objective can be min-

imized with respect to A and Z. This extension allows us to automatically optimize the

feature scale γ2 by setting A=γ2I; rescale features with a diagonal matrix A = ∆; or induce

dimensionality reduction with a rectangular matrix, i.e. A∈Rr×d.

Gradients w.r.t. A and Z. The gradient of L w.r.t. A is similar to the NCA gradi-

ent [73],

∂LA

∂A
= −2A

n∑

i=1

m∑

j=1

pij
pi
qijvijv

>
ij, (3.8)

where we abbreviate vij = (x(i) − z(j)) and qij = [Q]ij. The gradient of LA w.r.t. Z results

in a modification of (3.6):

∂LA

∂Z
=2A>A

∂L
∂Z

. (3.9)

Due to additional multiplications by A, the time complexity of each gradient iteration in-

creases to O
(
d2mn+ d3

)
. (The cubic term drops if A is diagonal or of the form γ2I.)

48



Table 3.1: Characteristics of datasets used in evaluation.

Dataset Statistics

name n |Y| d (dL)

yale-faces 1961 38 8064 (100)
isolet 3898 26 617 (172)
letters 16000 26 16 (16)
adult 32562 2 123 (50)
w8a 49749 2 300 (100)
mnist 60000 10 784 (164)
forest 100000 7 54 (54)

Practical aspects. We find that the form A = γ2I leads to comparable results as the

diagonal or full matrix. It has the added advantage that it is substantially faster and that it

alleviates the need to multiply the test data with A, as the kNN decision rule is invariant to

uniform feature scaling. Optimizing the scaling factor γ2 does however affect the compressed

set Z. Also, optimizing γ2 with conjugate gradient descent prior to optimizing Z (instead of

jointly) leads to similar results and may be preferred in practice due to its improved running

time. In our experiments, we initialize γ2 with cross-validation and optimize it prior to

learning. We pick the initialization that yields minimal training error.

3.1.4 Experimental Results

We evaluate the efficacy of SNC on seven benchmark data sets. We begin with a brief

description of the individual learning tasks and then evaluate the compression ratio and test

error, training time, sensitivity to noise and finally visualize the SNC decision boundary and

reference vectors.

Dataset descriptions. We evaluate SNC and other training set reduction baselines on

seven classification datasets detailed in Table 3.1. YaleFaces [71] consists of gray-scale face

49



10 4 10 3 10 2

0.16

0.18

0.2

0.22

0.24

0.26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.02 0.04 0.06 0.08 0.2 0.22

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.1

0.2

0.3

0.4

0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.36 0.38 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.01

0.02

0.03

0.04

0.05

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

adult w8a

letters

compression ratio

er
ro

r

forest

isoletyale-faces

SNC

KNN without LMNN

subsampling

KNN (with LMNN)

CNN (Hart, 1968)

FCNN (Angiulli, 2005)

mnist

m=3

m=2m=1

er
ro

r

compression ratio

adult (zoomed-in)

LSH (Gionis et al., 1999)

Figure 3.3: kNN test error rates after training set compression obtained by various algo-
rithms. See text for details.

images of 38 individuals under varying (label invariant) illumination conditions. The task is

to identify the individual from the image pixel values. Isolet∗ is a collection of audio feature

vectors of spoken letters from the English alphabet. The task is to identify which letter

is spoken based on the recorded (and pre-processed) audio signal. Letters∗ is derived from

images of English capital letters, the learning task is to identify the letter type based on

font specific features. Adult∗ contains U.S. census income and personal statistics, the task

∗http://tinyurl.com/uci-ml-data

50

http://tinyurl.com/uci-ml-data


is to predict if a household has an income over $50, 000. W8a† contains keyword attributes

extracted from web pages and the task is to categorize a web page into a one of a set of

predefined categories. MNIST ‡ is a set of gray-scale handwritten digit images; the task is

to identify the digit value from the image pixels. Forest∗ contains geological and map-based

data, and the task is to identify the type of ground cover (e.g. tree type) in a given area of

a map.

In addition to these data sets, we also used the USPS § handwritten digits data set as a

development set. As we evaluated SNC multiple times on its test portion, and we want

to clearly separate development and evaluation data, we are not including it in this result

section. The results are comparable to the benchmark sets included in this section.

Preprocessing. Large Margin Nearest [180] Neighbors (LMNN) is an effective method to

speed up kNN search through dimensionality reduction, that is, by reducing the parameter

d in the running time O(nd). LMNN learns a projection into a lower dimensional space that

speeds up kNN while maintaining (or improving) the classification error. We can validate

this observation on our benchmark tasks and therefore pre-process all datasets with LMNN,

which improves the kNN speed and accuracy for nearly all datasets.

For Isolet and MNIST, the dimensionality is reduced as described in the original paper

[181]. For the remaining datasets, if the input dimensionality d is ≥ 200 it is reduced to

100 with LMNN, and if it is between 100 and 200, it is reduced to 50. For the YaleFaces

data set, we follow prior work [181] and first rescale the images to 48x42 pixels, then reduce

the dimensionality with PCA (to 200) while omitting the leading 5 principal components

(which capture large variations in image brightness). Finally, we apply LMNN to reduce the

†http://tinyurl.com/libsvm-data
‡http://tinyurl.com/mnist-data
§http://tinyurl.com/usps-data

51

http://tinyurl.com/libsvm-data
http://tinyurl.com/mnist-data
http://tinyurl.com/usps-data


dimensionality further to d = 100. Table 3.1 lists the dimensionality of each dataset before

(d) and after (dL) LMNN preprocessing. For Forest, we use the same procedure as previous

work [5] who subsample uniformly.

Implementation. For purposes of this evaluation, SNC is initialized by subsampling in-

puts based on the class distribution up to the desired compression rate. For testing, we use

the 1NN (1 Nearest Neighbor) rule for all of the algorithms. Results of SNC and of any

initialization-dependent baselines are reported with the average and standard deviation over

5 runs. Neither YaleFaces nor Forest have predefined test sets and so we report the average

and standard deviations in performance over 5 and 10 splits, respectively.

Baselines. Figure 3.3 shows the test error of kNN evaluated on a compressed training set

generated by SNC (solid blue line) with A = γ2I. We depict varying rates of compression,

and compare against the following related baselines: 1. kNN without compression both

before (brown dotted line) and after LMNN dimensionality reduction (red dotted line), 2.

kNN on a reference set subsampled uniformly from the training set based on the class balance

(pink dotted line), 3. Approximate kNN via locality-sensitive hashing LSH [72], using a

previous implementation [3] (purple dotted line) 4. CNN [81] (orange line), and 5. FCNN

[5] (green line). CNN and FCNN select training-consistent subsets and are arguably the

most popular training set reduction algorithms for kNN. Both methods are briefly described

in Section 3.2.

Both SNC and subsampling can be performed at varying rates of compression and are plotted

at compression ratios {1%, 2%, 4%, 8%, 16%}. (We omit the 16% compression rate for forest,

due to its large size.) kNN with and without LMNN does not do any compression and for

better readability both methods are depicted as horizontal lines. For LSH we cross-validate

52



over the number of tables and hash functions and select the fastest setting that has equal or

less leave-one-out error compared to kNN without LSH (for larger datasets, we performed

the LSH cross-validation on class-balanced subsamples of the training set: 10% subsamples

of Adult, W8a and MNIST, and 5% of Forest). Identical to SNC, we plot average LSH

test error and standard deviation for multiple random initializations. CNN and FCNN do

not have a parameter for compression ratio. However both algorithms incrementally add

inputs to the reference set and for comparison to our method with variable compression rate

we have depicted the errors of partial compressed sets. For CNN, we also plot standard

deviations as the algorithm is order dependent. In full disclosure, we want to point out that

both CNN and FCNN as intended by the authors would only output a single compressed set

(the rightmost point of the respective plot lines).

Error and Compression. We observe several general trends from the results in Figure 3.3.

Simply subsampling the training set yields high error rates, showing that optimization of the

compressed data set is crucial to obtain good compression/error trade-offs. SNC performs

extremely well on all data sets even with a compression ratio as low as 2%. In fact, SNC

clearly outperforms all other compression methods in terms of compression/error trade-

off across all data sets—often yielding significantly lower test error rates than CNN and

FCNN under only a fraction of their final compression ratio. SNC at ≥ 4% matches (up to

significance) or outperforms LSH error on every dataset. Further, on almost all data sets

(except W8a and Forest), kNN with SNC can match the test error rates (with and without

LMNN) using the full training data even at very high compression ratios (2− 4%). In fact,

on 4/7 data sets, kNN with SNC at a compression ratio of 4% achieves even lower test error

than kNN using the full training set.

53



Table 3.2: SNC training times.

Training Times
Dataset Compression Ratio

1% 2% 4% 8% 16%
YALE-FACES − 4s 6s 9s 15s

ISOLET 11s 17s 28s 50s 1m 26s
LETTERS 41s 1m 18s 2m 44s 4m 34s 8m 13s

ADULT 2m 27s 4m 1s 7m 39s 12m 51s 23m 18s
W8A 6m 5s 10m 19s 19m 26s 39m 12s 1h 12m

MNIST 17m 18s 36m 43s 1h 13m 2h 17m 4h 57m
FOREST 17m 38s 33m 55m 44s 1h 45m −

The last observation is particularly surprising, as one would expect an increase in error due

to compression, rather than a reduction. However, one explanation for this effect is that SNC

optimizes the compressed data especially to do well with kNN classification. A good example

is the Adult data set, which has a strong class imbalance with 78% of the data belonging to

one class. In other words, this is a data set in which kNN barely outperforms predicting the

most common label. With high compression, SNC can position its learned reference vectors

in a way to learn a simpler decision boundary and outperform kNN drastically with 0.15 vs.

0.20 error (zoomed in portion of the graph).

Time complexity and training time. Training times for SNC, averaged across 5 runs,

are given in Table 3.2. SNC (with A=γ2I) is expected to scale with complexity O(dmn)

per iteration. As the size of the compressed set m doubles between columns, training times

roughly double as well. Variations in dimensionality and training set sizes among datasets

make comparisons along the columns less precise, but training times do not seem to exceed

theoretical expectations. All experiments were performed on an 8-core Intel L5520 CPU

with 2.27GHz clock frequency.

54



Speed-up at test time. At testing time, standard implementations of kNN testing will

compute the distances between each test point and all reference set points. However, di-

mensionality reduction [180] or clever structures, such as ball trees [133] or hash tables [72],

can vastly reduce test time. Table 3.3 (Left) shows the test time speed-up obtained through

kNN with an SNC compressed reference set versus kNN with the full training set (after

dimensionality reduction with LMNN). The table depicts the speed-up with the standard

exhaustive neighbor search (in black), and accelerated versions with ball-trees (in teal) and

LSH (in purple), each applied before and after SNC compression.

With a compression ratio ≥ 4% the error rates on all data sets are lower or very close to

those obtained with kNN without compression. However, we highlight settings that match

or outperform the uncompressed kNN error in bold. For the standard exhaustive implemen-

tation in Table 3.3, speed-ups achieved by SNC generally exceed those expected at the given

compression ratio (e.g >100× speed-up at 1% compression). This may be due to favorable

cache effects from using a smaller reference set. This table shows that SNC compression

can lead to notable speed-ups even when using ball-trees and hashing, demonstrating that

SNC can be used in conjunction both methods for even greater speed-ups. The results with

ball-trees are particularly impressive, as all inputs have undergone dimensionality reduction,

which is known to significantly improve ball-tree speed-up itself [180].

Table 3.3 (Right) compares the number of distance computations required for kNN search

with SNC at 4% compression versus kNN search with ball-trees or LSH using the full training

set. The implementations of kNN, ball-trees, and LSH may not be directly comparable, so we

use distance computations as a proxy for speed. SNC requires fewer distance computations

than either method on all datasets except Adult (with LSH) and Forest.

55



Table 3.3: Left: Speed-up of kNN testing through SNC compression without a data structure
(in black) on top of ball-trees (in teal) and LSH (in purple). Results where SNC matches or
exceeds the accuracy of full kNN (up to statistical significance) are in bold. Right: Speed-up
of SNC at 4% compression versus ball-trees and LSH on the full dataset. Bold text indicates
matched or exceeded accuracy.

Speed-up SNC 4% Comparison

Compression Ratio Distance Comps.
Dataset 1% 2% 4% 8% 16% Ball-Trees LSH

yale-faces − − − 28 17 3.6 19 11 3.5 12 7.3 3.2 6.5 4.2 2.8 7.1 21
isolet 76 23 13 47 13 13 26 6.8 13 14 3.7 13 7.0 2.0 13 13 14
letters 143 9.3 100 73 6.3 61 34 3.6 34 16 2.0 17 7.6 1.1 8.4 3.3 23
adult 156 56 3.5 75 28 3.4 36 15 3.3 17 7.3 3.1 7.8 3.8 3.0 17 0.7
w8a 146 68 39 71 36 35 33 19 26 15 10 18 7.3 5.5 11 13 2.1
mnist 136 54 84 66 29 75 32 16 57 15 8.4 37 7.1 3.6 17 11 8.5
forest 146 3.1 12 70 1.6 11 32 0.90 10 15 1.1 7.0 − − − 0.15 0.35

In summary, our results give strong indication that 1. SNC obtains drastic speed-ups during

test-time while only marginally increasing or, at times, decreasing kNN error rates; and 2. it

is an effective complement and competitor to existing state-of-the-art strategies for speeding

up kNN.

Compressed synthetic faces. Figure 3.4 visualizes synthetic SNC reference vectors learned

on the YaleFaces data. Here, we preprocess the data using PCA and learn a compressed data

set using the first 100 principal components. The figure shows (reconstructed) input faces

that are initially subsampled to be in the compressed set (left columns) and the resulting

optimized (synthetic) faces after SNC. It is interesting to observe that SNC is easily able to

identify and emphasize distinguishing characteristics (e.g. mustaches) while ignoring noisy

qualities (e.g. lighting).

Label noise. An interesting observation from the results in Figure 3.3 is that SNC com-

pression at times improves the kNN test error. We conjectured earlier that one explanation

may be that kNN with SNC can yield a smoother decision boundary. This effect may be

particularly beneficial in scenarios with label noise. We test this conjecture in Figure 3.5

56



initial faces optimized
synthetic faces initial faces optimized

synthetic faces

Figure 3.4: YaleFaces before and after compression.

(Right), where we examine the kNN error on the Letters dataset under increasing random

label corruption (for k = 1 and k = 3). The figure shows clearly that the kNN error in-

creases approximately linearly with label noise. SNC with 2%, 4%, 8% compression seems

to smooth out mislabeled inputs and yields a significantly more robust kNN classifier. In

contrast, CNN, FCNN and also subsampling (not shown in the figure to reduce clutter) do

not mitigate the effect of label noise and at times tend to even amplify the test error. It is

worth noting out that, for this experiment, CNN and FCNN were run to convergence and

had significantly higher compression ratios than SNC’s fixed ratios. For instance, at 0.32

label noise, CNN and FCNN both use more than 65% of the data in their compressed set.

57



γ2 = 1/2

initial subsampling after convergence

γ2 = 8 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 

label noise

er
ro

r

SNC (2%)

3NN (with LMNN)
CNN (Hart, 1968)
FCNN (Angiulli, 2005)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 
1NN (with LMNN)

SNC (4%)
SNC (8%)

Figure 3.5: Left: The decision rule and SNC data set (white circles) learned from 2d USPS
digits under varying γ2. Right: kNN test error rates with various data set reduction methods
on the Letters dataset under artificial label noise.

Visualized decision boundary. Figure 3.5 (Left) shows the reference set (white circles)

and decision rule (colored shading) before and after SNC optimization. The data set consists

of USPS handwritten digits {0, 1, 2, 3, 4} after projection onto 2D with LMNN (class mem-

bership is indicated by color). The left plot shows the (randomly subsampled) initialization

of the reference set and the decision boundaries generated by this set. The SNC vectors

are learned with 4% compression ratio and different scaling factors (γ2 = 1/2 and γ2 = 8,

respectively). The decision regions for each class are notably erroneous in several regions

prior to reference set optimization. For both scale factors γ2, optimizing the reference set

with SNC improves the decision boundary over the random sampling.

With a small γ2 (middle pane) the corresponding large variance of the stochastic neighbor-

hood encourages reference set vectors to produce results resembling a mixture model [23],

where groups of compressed vectors act as mixture component centers. The cluster centers

are not at the expected locations (i.e. nested within a dense set of vectors), but are pushed

outwards to accommodate the (possibly too) small γ2. Larger values of γ2 (right pane),

converge to the decision boundaries between classes. Indeed, for every compressed input

close to the boundary there are one or more representing the neighboring classes.

58



It is interesting to observe that by controlling γ2, SNC can learn very different compressed

sets. For naturally clustered data sets, larger values of γ2 may be preferred, to make reference

vectors represent dense regions in the data distribution. For data without such structure,

smaller values of γ2 may result in lower errors, as SNC can model the decision boundary

more accurately. As γ2 is an important hyperparameter that changes the characteristics

of the compressed set, its initial value should be set via cross-validation prior to potential

further optimization.

3.2 Related Work

Research on speeding up kNN is almost as old as the kNN rule itself. A big fraction con-

centrates on developing clever data structures in order to reduce the number of test time

comparisons; examples include KD trees [18], cover- and ball-trees [21, 133] and hashing [72].

In this section we review prior research that takes the complementary approach of reducing

the size of training data. We group these approaches under three general categories: training

set consistent sampling, prototype generation, and prototype positioning. (A complete survey

is [170].)

3.2.1 Training Set Consistent Sampling

The earliest work, called Condensed Nearest Neighbors (CNN) [81], starts by randomly se-

lecting a single input and creating a ‘reference’ set, which it will use to classify the training

data. It adds misclassified training inputs sequentially to this reference set until the full

training set is correctly classified. There have been multiple extensions to CNN including

post-processing methods [67] and stricter selection rules [169, 47]. Recently Fast CNN [5]

59



makes CNN sub-quadratic in n to train (as opposed to O(n3) näıvely for CNN), with empir-

ically better test generalization. All these methods retain a set of inputs that are a subset

of the original training set.

3.2.2 Prototype Generation

Prototype generation methods create ‘prototypes’ for the training data, which allow the

inclusion of new, artificial instances in the reduced data set [14]. These generated inputs

are typically found via clustering. Prior work has proposed to repeatedly merge nearest

neighbors within a class while the training error is unaffected [32]. Another idea is to merge

clusters of inputs, until the LOO training error increases over a pre-determined threshold

[123].

3.2.3 Prototype Positioning

There has also been work on learning the positions of this prototype subset. Proximity

graphs have been used to generate a reduced set [170]. It is even possible to determine the

best set of prototypes to exactly reproduce any decision boundary requested [146]. There has

been a body of work on using learning vector quantization (LVQ) [104] for designing kNN

prototypes as well. In general, all of these methods consider local properties to optimize the

reference set whereas SNC incorporates global information from the entire dataset through

the stochastic neighborhoods.

60



3.2.4 Gaussian Methods

Most similar to SNC are methods which optimize prototypes to maximize Gaussian mixtures

(which can be interpreted as a stochastic neighborhood). The stochastic neighborhood, de-

scribed in Section 3.1.1, smoothly models the probability that each prototype is the nearest

neighbor of a given training point using a Gaussian likelihood. The primary differences be-

tween SNC and these methods in initial prototype selection and how inputs are classified

during test-time. Two works ([45] and [115]) use a three-phase search for initial prototypes

that involves k-means and two different elimination rules. A variation of kNN called ‘soft’-

kNN uses the R nearest prototypes to classify inputs [20]. This work then maximizes the

probability of a correct prediction using the R closest prototypes. In effect, if R= n their

objective is similar to ours. However, because soft-kNN always considers all of the R proto-

types to make a classification this setting cannot be sped up with ball trees, so the authors

cross validate the soft-kNN error over R. This cross-validation does not consider the objec-

tive of reducing the size of R, which may result in a model that requires significantly more

computation than SNC.

3.3 Conclusions

We have introduced SNC, which is a simple and efficient algorithm to compress the training

set for kNN. Our experiments indicate that SNC reference set almost always provides com-

parable or lower test errors than the training set with compression rates of 2-4%, leading to

an order of magnitude improvement in testing time.

One important direction for future work is extending SNC to neighborhoods of higher car-

dinality (i.e. k = 3, 5). Recent work [166] provides a rigorous and efficient approach for

61



extending the stochastic neighborhood framework to larger neighborhoods. Another consid-

eration is that, as nearest-neighbor search in non-Euclidean spaces becomes more popular

(e.g. covariance matrices [31]) it is valuable to consider if SNC can be extended to this

setting. Another interesting direction is if one can learn compressed reference inputs while

simultaneously optimizing ball-tree structures.

In summary, we believe that SNC is a robust and highly effective algorithm that is based

on straight-forward gradient descent optimization. As it (a) seems to consistently improve

kNN speed, accuracy and robustness, and (b) can be combined with existing algorithms to

improve kNN, we hope it will be useful to researchers and practitioners in machine learning

and its application domains.

62



Chapter 4

Privacy: Protecting individual privacy

in causal inference

Data is now being collected about every aspect of our personal lives. From where we work

and live, who we contact, what our past and family history of illness is, data is informing

search results, social media, and doctor prescriptions, among many other services. This data

can be useful for personalizing such services; for example when searching for restaurants it

should be clear one is usually interested in restaurants within a few miles of where they live

or work. It also may be critical in emergency situations; for instance if an emergency medical

technician (EMT) wishes to treat someone in pain, but that person is allergic to morphine

(a common initially-used pain reliever), the EMT can opt to use a different pain-reliever.

As machine learning improves, personal data will increasingly become digitized for these

purposes and more.

Nearly all of this data however, is sensitive information that a person may reasonably want

to keep private. Indeed, even seemingly innocuous data has been used to identify individuals

in an anonymized dataset, leading to personally-harmful consequences:

63



1. The AOL search release. In 2006, the web-search company AOL released a dataset

of search results for more than 650,000 users during a 3-month window, for the purpose

of improving search. Usernames were replaced by an anonymous numerical identifier

designed to disassociate the search results from AOL accounts. Upon releasing the

data however, it was discovered that the search queries contained uniquely-identifying

information for many of the users in the dataset. For example, after only a few searches

including “landscapers in Lilburn, Ga” and “homes sold in shadow lake subdivision

gwinnett county georgia”, Thelma Arnold was identified by the New York Times as

user #4417749 [1]. Other users were also identified based on the fact that a common

search query is one’s own name.

2. The Neflix prize. Netflix announced a $1 million dollar competition to improve

its movie recommendation system in September 2006. They released a dataset that

included movie ratings, when the ratings occurred and, similar to the AOL dataset,

a unique ID secretly assigned to each user. Soon after, work was published that

matched Netflix reviews to those posted on the Internet Movie Database (IMDB)

to de-anonymize users [130]. This work was followed by a lawsuit against Netflix by a

woman who believes that her movie ratings made her private sexual orientation public

knowledge.

These are only a few examples of the impact of releasing sensitive data. Even more insidious

attacks on seemingly “more anonymized” data are possible, such as using genetic summary

statistics called single-nucleotide polymorphisms (SNPs) to determine if an individual has a

disease or not [57] (for more examples see Chapter 1 of Dwork & Roth, 2014 [57]). In the same

way, predictions from a machine learning algorithm trained on sensitive data can leak this

information. Consider the example (slightly modified) from [92]: Imagine you are company

A that buys advertising space on an web-search engine. The web-search company has an

64



algorithm that ranks ads in a list based on the search query Q and the profile information

of the person who made the search. Imagine that each time a person clicks on an ad, the

web-search engine updates its recommendation algorithm based on this profile information.

Now, as company A you would like to know what sort of people click on your advertisement.

To know this, you can create two profiles that are identical except for say, their age: one

≤50 the other >50. You can search for query Q and see whether your ad is ranked higher

for the younger profile or the older profile. What’s more, you can determine this information

for an individual! Say a user with IP address X clicks on your company A advertisement.

You can create the age-specific profiles again after this click and see how the ad ranking

changes before and after the click. Say that the ranking for the ≤50 profile goes down and

the ranking for the >50 profile goes up after the click. Then you can infer that the person

with IP address X is older than 50, and you have just inferred information that someone

may wish to keep private.

4.0.1 Motivation

As machine learning reaches into the fields of health care, finance, and legal work, it can

only be practical if it is able to adequately protect the privacy of sensitive data. One prime

example of a machine learning task that should be adequately privatized is predicting if a

random variable X causes another random variable Y , or vice-versa, or not at all. This

problem is termed “bivariate causal inference”. For example, let X be the amount a person

uses Facebook and Y be the extent to which that person is suffering from depression. One

possible relationship between these random variables is that increased Facebook usage causes

one to be more/less depressed. Equally, it could be that the more/less one is depressed

the more one uses Facebook, perhaps to communicate this to others. Finally, it could

be that there is no relationship at all between these variables. State-of-the-art work in

65



bivariate causal inference first asks individuals about their Facebook usage and their level

of depression. It then uses this data to determine if a causal link exists between X and

Y , and if so, in what direction [125]. However, publishing this causal inference can possibly

leak individual information about their Facebook usage and depression status (e.g., it is easy

to determine how frequently a person uses Facebook, which reveals information about their

depression level, via the published result).

4.1 Private Causal Inference

In this chapter we devise a scheme to prevent the leak of sensitive information in a popular

causal inference model, called the additive noise model (ANM) [89]. We make use of the

robust framework of differential privacy [55], which has been applied to other machine learn-

ing problems including empirical risk minimization [33], online learning [92], and principal

components analysis [59]. In essence, the technique works by adding cleverly calibrated ran-

dom noise to the causal inference result such that it is impossible to tell if fluctuations in

the result are caused by an individual or the random noise. We show that it is possible to

release causal inference results that are simultaneously private and nearly always the same

as the non-private result.

4.1.1 Prior Art

Causal identification allows one to reason about how manipulations of certain random vari-

ables (the causes) affect the outcomes of others (the effects). Uncovering these causal struc-

tures has implications ranging from creating government policies to informing health-care

practices.

66



The gold-standard in discovering causal relations is the randomized intervention experiment:

a researcher fixes a random variable to take on values uniformly from its domain and observes

the outcomes of all other random variables. It can be shown that any observed correlations

result directly from causal relationships (whereas without such randomization they may not).

While such interventions are conceptually simple, they are in many cases cost-impractical,

technically-impossible, or even more seriously morally-questionable. As an extreme example,

implementing an intervention to answer whether diet X causes cancer Y would require

making individuals consume different diets for a period of time and observing their cancer

outcomes to determine if X → Y . In the same way, if one wanted to identify if Y → X one

would have to induce different cancer outcomes and observe dietary outcomes. Therefore,

there has been a wealth of research towards determining causal structure without having to

resort to interventions.

One initial alternative to randomized experiments is conditional independence testing [159,

135], in which one works to test whether two random variables X, Y are independent given

another Z. Imagine one wants to know about the causal relationships between a set of

random variables, often represented by a causal graphical model. Using the results of many

such conditional independence tests for all random variables of interes Pearl et al. showed

that one could find a certain set of causal graphical models that were consistent with these

test results (such a set is referred to as ‘Markov-equivalent’). There are two immediate

difficulties with this approach: 1. Often, these conditional independence tests result in many

possible consistent causal structures. When this happens, we are not able to distinguish the

causal relationships between certain pairs of random variables, and more testing or other

methods are required to determine these. 2. Conditional independence testing cannot be

used to determine the causal relationship between just two random variables, as no such

conditional independence test exists.

67



In the absence of interventions, the field of causal inference attempts to discover the un-

derlying causal relationships of a set of random variables entirely based on samples from

their joint distribution, without requiring conditional independence assumptions. The field

of causal inference is now a mature research area, covering learning topics as diverse as super-

vised batch inference [116, 125, 137], time-series causal prediction [69], and linear dynamical

systems [149]. Many inference methods require only a regression technique and a way to

compute the independence between two distributions given samples [89, 95], and so thus are

extrememly practical.

One would hope that researchers could publicly release their causal inference findings to

inform individuals and policy makers. One of the primary roadblocks to doing so is that

often causal inference is performed on data that individuals may wish to keep private, such

as data in the fields of medical diagnosis, fraud detection, and risk analysis. Currently, no

causal inference method has formal guarantees about the privacy of individual data, which

may be able to be inferred via attacks such as reconstruction attacks [50].

Arguably one of the best notion of privacy is differential privacy, introduced by [55] and since

used throughout machine learning [54, 92, 119, 33, 56]. Differential privacy guarantees that

the outcome of an algorithm only reveals aggregate information about the entire dataset

and never about the individual. An individual who is considering to participate in a study

can be reassured that his/her personal information cannot be recovered with extremely high

probability.

To our knowledge, this paper is the first to investigate private causal inference. We show that

it is possible to privately release the quantities produced by the highly-successful additive

noise model (ANM) framework by adding small amounts of noise, as dictated by differential

privacy. Furthermore, these private quantities, with high probability, do not change the

68



causal inference result, so long as it is confident enough. We demonstrate on a set of real-

world causal inference datasets how our privacy-preserving methods can be readily and

usefully applied.

4.1.2 Causal Inference & Privacy

Our aim is to protect the privacy of individuals who submit personal information about two

random variables of interest X and Y . Their information should remain private when it

is used to infer whether X causes Y (X → Y ), or Y causes X (Y → X) using the ANM

framework. This personal information comes in the form of i.i.d. samples {(x(i), y(i))}ni=1 from

the joint distribution PX,Y . We will assume that, 1. There is no confounding variable Z that

commonly causes or is a common effect of X and Y . 2. X and Y do not simultaneously

cause each other.

4.1.3 Additive Noise Model

Deciding on the causal direction between two variables X and Y from a finite sample set

has motivated an array of research [64, 100, 162, 89, 189, 124, 95, 107, 116]. Perhaps one of

the most popular results is the Additive Noise Model (ANM) proposed by [89]. The ANM

framework assumption is defined as follows.

Definition 4. Two random variables X, Y with joint density p(x, y) are said to ‘satisfy an

ANM’ X→Y if there exists a non-linear function f : R→R and a random noise variable

NY , independent from X, i.e. X ⊥⊥ NY , such that

Y = f(X) +NY .

69



Y

NY

X
f

X Y
g

NX

X!Y Y !X

inde
pend

ent
independent

Figure 4.1: The graphical model representations for both possible additive noise models
(ANMs) [89]: X → Y and Y → X. In this model if a random variable X causes another Y ,
then Y is a function (e.g., f) of X plus random noise NY . Importantly, it is assumed that
this noise is independent from the input X, which will help us identify the causal direction
from samples of X and Y . See text for details.

As defined, an ANM X→ Y implies a functional relationship mapping X to Y , alongside

independent noise, as shown in Figure 4.1. In order for this model to be useful for causal

inference we would like the induced joint distribution PX,Y for this ANM to be somehow

identifiably different from the one induced by the ANM Y → X. If so, we say that the

causal direction is identifiable [125]. If not, we have no hope of recovering the causal direction

purely from samples under the ANM.

[89] showed that ANMs are generically identifiable from i.i.d. samples from PX,Y (except for

a few special cases of non-linear functions f and noise distributions). The intuition behind

this is for the X → Y ANM, consider for most non-linear f and (for simplicity) 0-mean

NY , the density p(y|x) has mean f(x) with distribution given by NY . This implies that

p(y− f(x)|x) has distribution NY that is independent of X. However, p(x− f−1(y)|y) is for

many choices of f and NY not independent of y.

70



Algorithm 3 ANM Causal Inference [125]

1: Input: train/test data {x(i), y(i)}ni=1, {x(i)
′
, y(i)

′}mi=1

2: Regress on training data, to yield f̂ , ĝ, such that:
3: f̂(x(i)) ≈ y(i), ĝ(y(i)) ≈ x(i), ∀i
4: Define the test vectors:
5: x′=[x(1)

′
, . . . , x(m)′]>, y′=[y(1)

′
, . . . , y(m)′]>

6: Compute residuals on test data:
7: r′Y := y′ − f̂(x′), r′X := x′ − ĝ(y′)
8: Calculate dependence scores:
9: sX→Y := s(x′, r′Y ), sY→X := s(y′, r′X)
10: Return: sX→Y , sX→Y , and D, where

11: D =

{
X→Y if sX→Y < sY→X

Y →X if sX→Y > sY→X

4.1.4 Inferring Causality

[125] give a practical algorithm for determining the causal relationship between X and Y

(i.e., either X → Y or Y → X), as shown in Algorithm 3. The first step is to partition

the i.i.d. samples into a training and a testing set. We use the training set to train the

regression functions f̂ : X → Y and ĝ : Y → X. We use the testing set to compute the

residuals r′Y = y′− f̂(x′) and r′X := x′− ĝ(y′). If we have an ANM X→Y then the residual

r′Y is an estimate of the noise NY which is assumed to be independent of X. Therefore,

we calculate the dependence between the residual r′Y and the input x′, sX→Y := s(x′, r′Y ),

and sY→X := s(y′, r′X), using a dependence score s(·, ·). If sX→Y is less than sY→X , then we

declare X→Y , otherwise Y →X. Figure 4.2 gives a visual illustration of this ANM causal

inference algorithm.

71



f̂(x)

ĝ(y)

Step 1: Fit regression functions Step 2: Compute Residuals

x0 y0

Step 3: Test Dependence

dependence
score

x

yx

y

X ! Y if

sX!Yz }| {
s(x0, r0Y ) <

sY !Xz }| {
s(y0, r0X)

Y ! X otherwise

r0X := x0 � ĝ(y0)r0Y := y0 � f̂(x0)

Figure 4.2: An illustration of the high-level steps of the ANM algorithm [89, 125].

4.1.5 Dependence Scores

Crucially, the ANM approach hinges on the choice of dependence score s(·, ·). There have

been many proposals, and we give a quick review of the most popular methods (for a detailed

review see [125]).

Spearman’s ρ is a rank correlation coefficient that describes the extent to which one random

variable is a monotonic function of the other. Specifically, imagine independently sorting the

observations {a(1), . . . , a(m)} and {b(1), . . . , b(m)} by value in increasing order. Let o
(i)
a be the

rank of a(i) in the a-ordering, and similarly, o
(i)
b for b(i) in the b-ordering. Then Spearman’s

ρ is,

s(a,b) :=

∣∣∣∣∣1−
6
∑m

i=1 d
(i)2

m(m2 − 1)

∣∣∣∣∣

where d(i) :=(o
(i)
a − o(i)b ) are the rank differences for a,b.

Kendall’s τ . Similar to Spearman’s ρ, the Kendall τ rank score calls a pair of indices (i, j)

concordant if it is the case that a(i)>a(j) and b(i)>b(j). Otherwise (i, j) is called discordant.

72



Then the dependence score is defined as

s(a,b) :=
|C −D|

1
2
m(m− 1)

where C is the number of concordant pairs and D is the number of discordant pairs.

HSIC Score. The first proposed score for the ANM causal inference is based on the Hilbert-

Schmidt Independence Criterion (HSIC) [76], which was used by [89]. Let a=[a(1), . . . , a(m)]>

and b = [b(1), . . . , b(m)]>. They compute an estimate of the p-value of the HSIC under the

null hypothesis of independence, selecting the causal direction having the lower p-value.

Alternatively, one can use an estimator to the HSIC value itself:

s(a,b) := ĤSICkθ(a),kθ(b)
(a,b) (4.1)

where kθ is a kernel with parameters θ. [125] show that under certain assumptions the

algorithm in section 3 with the HSIC dependence score is consistent for estimating the

causal direction in an ANM.

Variance Score. When the noise variables in the ANM are Gaussian, the variance score

was proposed in [29], and defined as s(a,b) := logV(a)+logV(b). Changes to a single input

value can induce arbitrarily large changes to this score, which makes the variance score ill

suited to preserve differential privacy.

IQR Score. We introduce a robust version of this score by replacing the variance of the

random variables with their interquartile range (IQR). The IQR is the difference between

the third and first quartiles of the distribution and can be estimated empirically. We defined

73



the following IQR-based score:

s(a,b) := log IQR(a) + log IQR(b). (4.2)

4.1.6 Differential Privacy

We assume that the data set D = {(x(i), y(i))}ni=1 contains sensitive data that should not

be inferred from the release of the dependence scores. One of the most widely accepted

mechanisms for private data release is differential privacy [55]. In a nutshell it ensures that

the released scores can only be used to infer aggregate information about the data set and

never about an individual datum (x(i), y(i)).

Let us define the distance d(D, D̃) between two data sets D and D̃ as the number of instances

in which these two sets differ. If a data set D is changed to D̃, a distance d(D, D̃) ≤ 1 implies

that at most one element was substituted.

Definition 5. A randomized algorithm A is (ε, δ)-differentially private for ε, δ ≥ 0 if for

all O∈Range(A) and for all neighboring datasets D, D̃ with d(D, D̃) ≤ 1 we have that

Pr
[
A(D) = O

]
≤ eε Pr

[
A(D̃) = O

]
+ δ. (4.3)

One of the most popular methods for making an algorithm (ε, 0)-differentially private is the

Laplace mechanism [55]. For this mechanism we must define an intermediate quantity called

the global sensitivity, ∆A describing how much A changes when D changes,

∆A := max
D,D̃⊆X s.t. d(D,D̃)≤1

|A(D)−A(D̃)|.

74



The Laplace mechanism hides the output of A with a small amount of additive random

noise, large enough to hide the impact of any single datum (x(i), y(i)).

Definition 6. Given a dataset D and an algorithm A, the Laplace mechanism returns

A(D) + ω, where ω is a noise variable drawn from Lap(0,∆A/ε), the Laplace distribution

with scale parameter ∆A/ε.

It may be that the global sensitivity of an algorithm A is unbounded in general, but can be

bounded in the context of a specific data set D over all neighbors D̃. For such datasets we

can bound the local sensitivity

∆(D)A := max
D̃⊆X s.t. d(D,D̃)≤1

|A(D)−A(D̃)|.

If an algorithm has bounded global sensitivity it certainly has bounded local sensitivity.

[132, 54, 94] show how to use the local sensitivity to cleverly produce private quantities for

datasets with bounded local sensitivity.

4.1.7 Test Set Privacy

The data is partitioned into training and test sets, which are used in different ways. We

therefore introduce mechanisms to preserve training and test set privacy respectively, which

can be used jointly. Specifically, we show how to privatize the dependence scores sX→Y , sY→X .

The reason for this is three-fold: 1. Privatizing the dependence score immediately privatizes

the causal direction D, because operations on differentially private outputs preserve privacy

(so long as they do not again touch the data). 2. Releasing the scores indicates how confident

the ANM method is about the causal direction, which is absent from the binary output D. 3.

It is unclear which dependence score is best for a particular dataset, so we privatize multiple

75



Table 4.1: Dependence scores and their privacy. A checkmark indicates that there exist
meaningful bounds on either the global or local sensitivity.

Test Training
Global Local Global Local

Score Sense. Sense. Sense. Sense.

Spearman’s ρ X X - X
Kendall’s τ X X - X

HSIC X X X X
IQR - X - X

scores and leave this choice to the practitioner. In this section we begin with test set privacy

and describe training set privacy in Section 4.1.8. Table 4.1 gives an overview of test and

training set privacy results for the dependence scores that we consider.

Let (x′,y′) be the initial test data and (x̃′, ỹ′) be the test data after a single change in the

dataset. Let x̃′ = [x(1)
′
, . . . , x(k−1)

′
, x̃(k), x(k+1)′, . . . , x(m)′]> and similarly for ỹ so that this

single change occurs at some index k. The key to preserving privacy is to show that the

selected dependence score s(·, ·) can be privatized. We show that if our dependence score is a

rank correlation coefficient (Spearman’s ρ, Kendall’s τ) or the HSIC score [76], we can readily

bound its test set global sensitivity when applied to (x′,y′) versus (x̃′, ỹ′). As the IQR score

has bounded test set local sensitivity we can apply the algorithm of [54] for privacy.

Rank Correlation Coefficients

We first demonstrate global sensitivity for the two rank correlation scores in Section 4.1.2.

Theorem 3. The rank correlation coefficients have the following global sensitivities,

1. Let ρ(·, ·) be Spearman’s ρ score, then

|ρ(x′, r′Y )− ρ(x̃′, r̃′Y )| ≤ 30

m

76



2. Let τ(·, ·) be Kendall’s τ score, then

|τ(x′, r′Y )− τ(x̃′, r̃′Y )| ≤ 4

m

Proof. Our goal is to bound the following global sensitivity in both scores: |s(x′, r′Y ) −

s(x̃′, r̃′Y )|. For Spearman’s ρ, suppose the change is on a(k) and b(k), it is easy to verify that

(1) d(i) changes by at most 2, for i 6= k; (2) d(k) changes by at most m−1; (3) di ≤ m−1 for

all i. Since d(i)
2 − (d(i) − 2)2 = 4(d(i) − 1) ≤ 4(m− 2) for i 6= k, the maximum change inside

the summation of the Spearman’s ρ score is upper bounded by (m− 1)(4m− 8) + (m− 1)2.

Therefore, global sensitivity of ρ is bounded by

6(m− 1)(5m− 3)

m(m2 − 1)
≤ 30

m

.

For Kendall’s τ we can affect at most (m−1) pairs by moving a single element of x′, as well

as (m−1) pairs for changing r′Y (either from concordant pairs to discordant pairs, or vice

versa). Therefore, the global sensitivity of Kendall’s τ is

|s(x′, r′Y )− s(x̃′, r̃′Y )| ≤ 2(m− 1)
1
2
m(m− 1)

≤ 4

m

The bound on the global sensitivity ∆ of our scores enables us to apply the Laplace mech-

anism [55] to produce (2ε, 0)-differentially private scores: pX→Y , pY→X . Specifically, we add

Laplace noise Lap(0,∆/ε) to our Spearman’s ρ and Kendall’s τ scores to preserve privacy

w.r.t. the test set. Moreover, as a general property of differential privacy we can compute

77



any functions on these private scores and, so long as they do not touch the data, the out-

puts of these functions are also private. This means that we can compute the inequality

pX→Y <pY→X to decide if X causes Y or vice-versa privately.

An important consideration is to what degree the addition of noise affects the true decision:

sX→Y <sY→X . Importantly, we can prove that, in certain cases, the addition of Laplace noise

required by the mechanism is small enough to not change the direction of causal inference.

These are cases in which there is a large ‘margin’ between the scores sX→Y and sY→X . So

long as this margin is large enough and in the correct order the addition of Laplace noise

has no effect on the inference with high probability.

Theorem 4. Given two random variables X, Y who have w.l.o.g. the causal relationship

X → Y , assume that they produce correctly-ordered scores: sX→Y < sY→X , with margin

γ = sY→X − sX→Y . Let pX→Y , pY→X be these scores after applying the Laplace mechanism

[55] with scale σ = ∆/ε then the probability of correct inference with these private scores is,

P(pX→Y < pY→X) = 1− γ + 2σ

4σ
e−

γ
σ .

We leave the proof to the appendix. Note that the probability of incorrect inference decreases

nearly exponentially as the margin γ increases. This is a particularly nice property as the

margin essentially describes the confidence of the (non-private) causal inference prediction:

large γ corresponds to high confidence in the inference. Additionally, there is an exponential

decrease as m and ε grow. In Section 4.1.9, we show on real-world causal inference data that

we can accurately recover the true causal direction for a variety ε settings.

78



HSIC Score

We begin by defining the empirical estimate of the HSIC score given kernels k, l:

ĤSICk,l(x
′, r′Y ) :=

1

(m− 1)2
trace(KHLH) (4.4)

where Kij = k(x′i, x
′
j), Lij = l(r′Y,i, rY,j) and Hij = δ{i=j}−1/m. We assume k, l are bounded

above by 1 (e.g., the squared exponential kernel, the Matern kernel [139]). Our goal is to

show that when we replace (x′,y′) with (x̃′, ỹ′) the global sensitivity is small. Specifically

we prove the following theorem.

Theorem 5. The score in eq. (4.4) has a global sensitivity of at most 16m−8
(m−1)2 . Specifically,

|ĤSICk,l(x
′, r′Y )− ĤSICk,l(x̃

′, r̃′Y )| ≤ 16m− 8

(m− 1)2

Proof. For simplicity defineH(·, ·) := ĤSICk,l(·, ·). Note that, as the trace is cyclic: trace(KHLH) =

trace(HKHL). Further, let K̃, L̃ be the kernels defined on the modified data (x̃′, ỹ′). Then

as the data is represented purely through the kernel matrices and the trace is Lipschitz w.r.t.

these matrices, we can apply the triangle inequality to yield,

|H(x′, r′Y )−H(x̃′, r̃′Y )| ≤
‖HLH‖∞‖K − K̃‖1

(m− 1)2
+
‖HKH‖∞‖L− L̃‖1

(m− 1)2

To bound the infinity norms, let L = HLH, then

|Lij| =
∣∣∣∣∣Lij −

∑m
a=1 Laj
m

−
∑m

b=1 Lib
m

+

∑m
a,b=1 Lab

m2

∣∣∣∣∣

≤ 4

79



as Lij ≤ 1 (this inequality also holds for HKH). Finally, note that as there is only a single-

element difference between (x′, r′Y ) and (x̃′, r̃′Y ), we have that ‖K − K̃‖1 ≤ 2m− 1 (and also

for L, L̃).

In fact, we can improve this bound to 12m−11
(m−1)2 using trace identities, as described in the

appendix. Given this global sensitivity bound we can use Theorem 4 to guarantee that

under certain conditions the Laplace mechanism w.h.p. does not change the direction of

causal influence.

IQR Score

Unfortunately the IQR does not have a bounded global sensitivity, as there exist datasets

for which the IQR can change by an unbounded amount. Instead, [54] offer an efficient

technique to privately release the IQR. We give a slightly modified version of their approach

in Algorithm 4.

Algorithm 4 IQR Propose-Test-Release [54]

1: Input: data X = {x(1), . . . , x(m)}, privacy ε, δ > 0
2: k = blog IQR(X)c
3: B1 = [ek, ek+1)
4: B2 = [ek−0.5, ek+0.5)
5: for j = 1,2 do
6: Aj := number of data-points to modify to move IQR(X) out of interval Bj

7: Rj = Aj + z, where z ∼ Lap(0, 1
ε
)

8: if Rj > 1 + log(1/δ) then
9: return log IQR(X) + z, where z ∼ Lap(0, 1

ε
)

10: end if
11: end for
12: return ⊥

80



∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

z1+z2−z3
p(z1 | a, s)p(z2 | b, s)p(z3 | c, s)p(z4 | d, s)dz4dz3dz2dz1 (4.5)

First the algorithm defines two intervals B1 and B2 which both contain IQR(X). If the IQR

were to be pushed out of both of these intervals it would imply that the IQR changed by a

factor of e. Therefore we loop over both intervals and calculate the number of points Aj that

an adversary would need to change to push the IQR out of B1 or B2. Note that Aj is itself

a data-sensitive query and so, to preserve privacy of this query, we can add Laplace noise to

it. Then, if one of these noisy estimates Rj = Aj + z, where z ∼ Lap(0, 1/ε) is larger than

some threshold, it implies that with high probability (exactly 1 − δ), that the IQR(X) has

multiplicative sensitivity of at most e, for the specific dataset X. Note that this is precisely

the local sensitivity as defined in Section 4.1.2, as it is specific to X. This means that we

can add Laplace noise z to log IQR(X). If neither of the Rj are above the threshold then

the algorithm returns null: ⊥. This algorithm was shown to be (3ε, δ)-differentially private.

In our case we would like to release four private IQR scores. Note that we must look at

x′ three separate times: for IQR(x′), IQR(r′Y ), and IQR(r′X) (and three times as well for

y′). Therefore for both x′ and y′ we are composing three differentially private outputs.

Under simple composition this would lead to (9ε, 3δ) differential privacy for both x′ and y′.

However, we can make use of Corollary 3.21 in [56] to give (ε′, 3δ+δ′)-differential privacy, for

0 < ε′ < 1 and δ′ > 0, over three repeated mechanisms by ensuring each private mechanism

is (3ε, δ)-private, where 3ε = ε′/(2
√

6 log(1/δ′)).

The remaining question is whether this noise addition causes one to infer the incorrect causal

direction. Again, as long as there is a significant margin between the scores, we can preserve

the correct causal inference with high probability as follows.

81



Theorem 6. Let Qx′ = log IQR(x′), and similarly for Qy′ , Qr′X
, Qr′Y

, be the true log-IQR

scores. As well let Px′ , Py′ , Pr′X
, Pr′Y

be the private versions, multiplied by ez noise where

z ∼ Lap(0, 1/ε). The the following results hold:

1. [54] If the number of data-points needed to significantly change the IQR, Aj, is less

than e then, the probability that any one of the private IQR P∗ is released is small:

P

[
P∗ 6=⊥ |A1 or A2 ≤ e

]
≤ 3δ

2
.

2. If all private log-IQR scores are released, and the relationship between the true scores

holds Qx′ + Qr′Y
< Qy′ + Qr′X

(which implies X → Y ), then the probability that we

make the correct causal inference from the private scores is large,

P[Px′ + Pr′Y
< Py′ + Pr′X

] =

1− e
−γ
σ

96σ3

(
48σ3 + 33σ2γ + 9σγ2 + γ3

)

where γ = Qy′ +Qr′X
−Qx′ +Qr′Y

, and σ = 1/ε.

Proof. Given a set of Laplace random variables: z1 ∼ Lap(a, s), z2 ∼ Lap(b, s), z3 ∼

Lap(c, s), z4 ∼ Lap(d, s), where a, b, c, d are the means of the Laplace random variables

and s are the identical scale parameters. Furthermore, given that a + b < c + d, we would

like to compute the probability that z1+z2 < z3+z4. Let p(x | µ, σ) be the pdf of the Laplace

distribution Lap(µ, σ). Computing the above probability requires evaluating the expression

in eq. (4.5). Similar to the above proof, we can compute this integral by enumerating all of

the possible cases, which gives the stated result.

82



The first result says that the probability that we release an IQR score just because too much

noise was added to Aj is small. The second result says that with high probability we recover

the true causal direction, depending on the size of the dataset.

4.1.8 Training Set Privacy

Let (x,y) be the initial training data and (x̃, ỹ) be the training data after a change in the

dataset. Note that x and x̃ differ in at most one element (similarly for y and ỹ). The

length of both training datasets is n. From Algorithm 3, the only way the training set can

affect the dependency scores sX→Y , sY→X is through the regression functions f̂ , ĝ, used to

compute test set residuals r′Y , r
′
X . We use the kernel ridge regression method and so the

functions f̂ (and ĝ) can be written in the form: f̂(w, x) = w>φ(x), where φ(x) is a (possibly

infinite) feature space mapping to the Hilbert space corresponding to the kernel function

used. Similar to other work on private regression [164] we assume that |x|, |y| ≤ 1. The

ridge regression algorithm can now be written as:

w = argmin
w∈H

λ

2
‖w‖2H +

1

n

n∑

i=1

(w>φ(x(i))− y(i))2, (4.6)

where H is the corresponding Hilbert space. Practically speaking, even though w may

be infinite-dimensional, because it always appears in an inner product with the feature

mapping φ(x) we can utilize the ‘kernel trick’: k(x(i), x(j)) = φ(x(i))>φ(x(j)) to avoid having

to represent w explicitly.

Let f̂(w∗, ·) and f̂(w̃∗, ·) be the classifiers resulting from the optimization problem in eq. (4.6)

when trained on (x,y) and (x̃, ỹ), respectively (and similarly for ĝ). We show that the

residuals in Algorithm 3 are bounded.

83



Theorem 7. Given that the classifiers f̂(w∗, ·), f̂(w̃∗, ·) are the result of the optimization

problem in eq. (4.6), the residuals of these functions r′Y , r̃
′
Y are bounded as,

|r(i)Y
′ − r̃(i)Y | ≤

8

nλ3/2
(4.7)

for all i, where r
(i)
Y

′
, r̃

(i)
Y are the ith elements of r′Y , r̃

′
Y and m is the size of the test set.

See the appendix for the proof. This bound holds equally for r′X , r̃
′
X . The proof of the above

is inspired by the work of [150] and [94]. We place the proof in the appendix for the interested

reader. As far as we are aware this is the tightest bound for the optimization problem in

eq. (4.6), with a non-Lipschitz loss. In the following, we use this bound to preserve training

set privacy for the dependence scores considered in the previous section.

Rank Correlation Coefficients

Note that the bound in Theorem 7 directly implies that the ranking dependence scores have

global sensitivity 1 (equal to the size of their ranges). To see this note that we can consider

an adversarial situation in which the rank of every element of the residual r′Y changes when

the training set is altered in one element (as all the residual elements may change). This

means that the Laplace mechanism cannot guarantee useful privacy.

Instead, note that both ranking scores may still have reasonably bounded local sensitivity.

Specifically, if we consider the list of sorted residuals, it may be that there are large gaps

between neighboring residuals. If this is the case then changing the training set by one point

may not change the residual rankings. Thus, the ranking scores are in some sense stable to

changes in the training set (for certain sets).

84



Definition 7. We call a function f k-stable on dataset D if modifying any k elements

in D does not change the value of f . Specifically, f(D) = f(D∗) for all D∗ such that D can

be transformed into D∗ with a minimum of k element substitutions. We say f is unstable

on D if it is not even 1-stable on D. The distance to instability of a dataset D w.r.t. a

function f is the number of elements that must be changed to reach an unstable dataset.

With these definitions, we will use a modification of the Propose-Test-Release framework

that makes use of this stability as described in Algorithm 13 in [56].

Theorem 8 ([56]). Algorithm 13 [56] is (ε, δ)-differentially private. Further, for all β > 0

if s(x′, r′Y ) is log(1/δ)+log(1/β)
ε

-stable on r′Y , then Algorithm 13 releases s(x′, r′Y ) w.p. at least

1− β.

A lower bound on the distance to instability d is easily given by noting that s(x′, r′Y ) always

outputs the same result as long as none of the ranks of r′Y change. Let γ be the smallest

absolute distance between any two ranks. Then a lower bound on d is, d > bnγλ3/2/16c.

This is the largest number of training points that may change so that the closest ranks

moving towards each other do not overlap (given that they change by at most the amount

in eq. 4.7). This lower-bound is sufficient to use Algorithm 13 [56] to privatize the ranking

dependence scores.

HSIC Score

Theorem 9. For m ≥ 2, with kernels k, l ≤ 1 where l is Ll-Lipschitz, the HSIC score has a

training set sensitivity as follows,

∣∣∣ĤSICk,l(x
′, r′Y )− ĤSICk,l(x

′, r̃′Y )
∣∣∣ ≤ R

32Ll
√
m

n

85



where R = 8
λ3/2

.

The proof follows directly from Theorem 7 and Lemma 16 in [125]. Thus, the Laplace

mechanism gives us (ε, 0)-differential privacy and Theorem 4 gives us our utility guarantee.

IQR Score

Similar to the test set privacy section we will use propose-test-release to give a useful, private

IQR score. In fact, we will use the IQR algorithm almost identically, except that we will

define Aj as the number of training points required to move the IQR out of an interval.

Note that a lower bound on Aj is simply the number of points required to move every input

less than the median to the left and every input larger than the median to the right (or the

reverse of these), using the bound on r in eq. (4.7). The aforementioned privacy and utility

results of the IQR propose-test-release framework apply here. The only difference is we just

need to add noise to the IQR scores computed on the residuals, which implies (6ε, 2δ)-privacy

and that the results of Theorem 6 can be tightened.

4.1.9 Experimental Results

We test our methods for private release of causal inference statistics on a small subsets from

the Cause-Effect Pairs Competition collection [78]. Specifically, we randomly select 10 of the

largest 25 datasets that have a causal direction either X → Y or Y → X. We average over

10 random 50/50 train/test splits of the data. Table 4.2 shows the non-private accuracy of

the four dependence scores over these datasets. We show the probability of correct causal

inference changes as these scores are made private w.r.t. the test set. Note that these scores

86



HSIC IQRSpearman's Kendall's
pr

ob
. o

f c
or

re
ct

 in
fe

re
nc

e
⌧⇢

4031161161 2967

dataset id

✏ ✏✏✏
Figure 4.3: Probability of correctly identifying the causal direction on datasets selected
from the Cause-Effect Pairs Challenge [78]. Datasets for which the scores perform well were
selected in order to isolate the effect of privatization on the scores.

are often complementary, with the ranking-based scores performing well on datasets in which

HSIC does worse, and vice-versa.

Figure 4.3 shows the effect of privatization of the test set on the dependence scores. Note

that, for low ε (increased privacy), the probability of correct influence is lower as the amount

of noise required blurs the true dependence scores. However, as ε increases, so does this

probability, in some cases drastically. For the IQR score, recall that there is a probability

that the algorithm returns null: ⊥, if Rj is less than a threshold controlled by δ. We

investigated this probability, by varying δ ∈ [10−5, 10−2] and sampling 10, 000 points from

the appropriate Laplace distribution. We found that, for the IQR dataset in figure 4.3 every

sample did not move Rj below the null threshold. Therefore, the probability of null is

essentially 0.

The three left-most plots in Figure 4.4 demonstrate how λ, which has a large effect on the

training set sensitivity (as described in eq. 4.7) affects the probability of correct inference.

We perform this experiment for different settings of ε, and each one produces a distinctive

‘hump’ shape. This is because for small λ the sensitivity bound (4.7) is too large to produce

meaningful causal inference. Similarly, for large λ the kernelized regression algorithm (4.6)

is overly-regularized, which produces a poor regressor and poor dependence scores. Only

when λ is within a certain range do we balance the size of the sensitivity bound with the size

87



HSIC

4031
pr

ob
. o

f c
or

re
ct

 in
fe

re
nc

e

� ��

best �
4031 4031 4031

dataset id ↵=0.1 ↵=1 ↵=2

✏
Figure 4.4: Training set privacy for the HSIC score. The three left-most plots show how λ
affects the probability of correctly inferring the causal direction, while the right-most plot
depicts this probability when the best λ is selected over a ε ∈ [0.1, 10]. See text for more
details.

Table 4.2: The non-private accuracies of the ANM model on a subset of the Cause-Effect
Pairs Challenge [78], as well as the probability of correct causal inference after privatization.

dataset ids 4031 597 2209 2967 161 2132 1656 901 3484 1627
size 7713 7748 7766 7771 7782 7784 7803 7820 7853 7862

ε =∞ (non-private accuracies)
Spearman’s ρ 0.50± 0.53 0.00± 0.00 0.00± 0.00 0.70± 0.48 0.90± 0.32 1.00± 0.00 0.00± 0.00 0.30± 0.48 0.00± 0.00 1.00± 0.00
Kendall’s τ 0.50± 0.53 0.00± 0.00 0.00± 0.00 0.70± 0.48 0.80± 0.42 1.00± 0.00 0.00± 0.00 0.80± 0.42 0.00± 0.00 1.00± 0.00
HSIC [76] 1.00± 0.00 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.70± 0.48 0.60± 0.52 1.00± 0.00 0.40± 0.52 1.00± 0.00 0.10± 0.32
IQR [29] 0.50± 0.53 0.00± 0.00 0.10± 0.32 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.00± 0.00 0.90± 0.32 0.00± 0.00 1.00± 0.00

ε = 0.1
Spearman’s ρ 0.56± 0.45 0.03± 0.00 0.20± 0.02 0.57± 0.10 0.61± 0.06 0.92± 0.02 0.40± 0.06 0.34± 0.21 0.01± 0.00 0.82± 0.02
Kendall’s τ 0.54± 0.48 0.00± 0.00 0.00± 0.00 0.69± 0.38 0.78± 0.24 1.00± 0.00 0.12± 0.09 0.76± 0.41 0.00± 0.00 1.00± 0.00
HSIC [76] 0.68± 0.17 0.49± 0.00 0.60± 0.01 0.50± 0.00 0.50± 0.01 0.50± 0.00 0.52± 0.00 0.43± 0.06 0.66± 0.03 0.50± 0.00
IQR [29] 0.50± 0.00 0.50± 0.00 0.50± 0.00 0.50± 0.00 0.51± 0.00 0.50± 0.00 0.50± 0.00 0.50± 0.00 0.50± 0.00 0.50± 0.00

ε = 1
Spearman’s ρ 0.50± 0.53 0.00± 0.00 0.00± 0.00 0.69± 0.43 0.91± 0.17 1.00± 0.00 0.06± 0.07 0.30± 0.41 0.00± 0.00 1.00± 0.00
Kendall’s τ 0.50± 0.53 0.00± 0.00 0.00± 0.00 0.70± 0.48 0.81± 0.40 1.00± 0.00 0.00± 0.00 0.80± 0.42 0.00± 0.00 1.00± 0.00
HSIC [76] 0.85± 0.16 0.39± 0.03 0.98± 0.00 0.52± 0.01 0.55± 0.06 0.50± 0.01 0.66± 0.02 0.21± 0.25 1.00± 0.01 0.49± 0.01
IQR [29] 0.54± 0.04 0.48± 0.00 0.49± 0.00 0.52± 0.00 0.58± 0.01 0.51± 0.01 0.48± 0.00 0.50± 0.00 0.47± 0.01 0.51± 0.00

ε = 2
Spearman’s ρ 0.50± 0.53 0.00± 0.00 0.00± 0.00 0.69± 0.47 0.93± 0.17 1.00± 0.00 0.01± 0.02 0.31± 0.45 0.00± 0.00 1.00± 0.00
Kendall’s τ 0.50± 0.53 0.00± 0.00 0.00± 0.00 0.70± 0.48 0.80± 0.42 1.00± 0.00 0.00± 0.00 0.80± 0.42 0.00± 0.00 1.00± 0.00
HSIC [76] 0.92± 0.09 0.29± 0.04 1.00± 0.00 0.55± 0.01 0.59± 0.11 0.51± 0.01 0.78± 0.02 0.20± 0.26 1.00± 0.00 0.48± 0.02
IQR [29] 0.58± 0.09 0.46± 0.01 0.49± 0.01 0.54± 0.01 0.65± 0.02 0.52± 0.02 0.47± 0.01 0.51± 0.01 0.45± 0.01 0.52± 0.01

of the regularization. This range grows larger as ε increases as the privacy setting becomes

less strict (requiring less noise). The right-most plot shows the correct inference probability

using the best λ for a range of ε ∈ [0.1, 10]. With proper selection of λ we can achieve

high-quality causal inference that maintains privacy w.r.t. the training set.

88



4.2 Related Work

Discovering the causal nature between random events has captivated researchers and philoso-

phers long before the formal developments of statistics. This interest was formalized by [141]

who argued that all statistical correlations in data arise from underlying causal structures

between the concerned random variables. For example, the correlation between smoking and

lung cancer was found to arise from a direct causal link [61].

4.2.1 Bivariate Causal Inference

One of the most popular causal inference alternatives to conditional independence testing is

the Additive Noise Model (ANM) approach developed by [89] and used in many recent works

[189, 126, 107, 29]. ANMs, originally designed for inferring whether X → Y or Y → X and

later extended to large numbers of random variables, work under the assumption that the

effect is a non-linear function of the cause plus independent noise. ANMs are one of many

proposed causal inference methods in recent literature [95, 68, 116, 148]

4.2.2 Classical Methods

Work by [159, 135] shows how to determine if X → Y when these variables are a part of a

larger ‘causal network’, via conditional independence testing. One downside to conditional

independence based approaches is that inherently they cannot distinguish between Markov-

equivalent graphs. Thus it may be possible that a certain set of conditional independences

imply both X → Y and Y → X. Furthermore, if X and Y are the only variables in the

89



causal network there is no conditional independence test to determine whether X → Y or

Y → X.

4.3 Conclusion

We have presented, to the best of our knowledge, the first work towards differentially pri-

vate causal inference. There are numerous directions of future work including privatizing

other causal inference frameworks (e.g. IGCI [95]), analyzing the ANM algorithm without

train/test splits, as well as other dependence scores. As there is significant overlap in the

applications of causal inference and private learning we believe this work constitutes an

important step towards making causal inference practical.

90



Chapter 5

Discussion and Future Directions

The goal of this thesis was to directly address three roadblocks that frequently prevent

state-of-the-art machine learning models from being used in real-world application settings.

The first is the time required to evaluate a machine learning model, or its time-cost. In

chapter 2 we introduced this problem in the context of web-search ranking: a user will likely

be more dissatisfied by a ranking algorithm that is slightly more accurate and requires 10

seconds to evaluate, than a worse ranking that evaluates in 0.01 seconds. We formulated

this accuracy/time trade-off as a constrained set function optimization problem. We noted

that this optimization problem is approximately submodular, which allows us to obtain

near-optimal solutions to the NP-hard optimization problem via a simple greedy procedure.

Recursively solving these problems within a classifier tree allows us to refine the features we

select to rank each web-page, instead of simply selecting the same set of features for all in-

puts. We demonstrated that this matches, and often outperforms, a much more complicated

technique that requires clever initialization and an arduous alternating block coordinate de-

scent procedure to optimize [184]. In the future, we would like to design algorithms for more

complicated cost functions (for example, it may be that ‘purchasing’ a set of features ‘in

bulk’ may be cheaper than paying for them individually).

91



The second practical roadblock for machine learning models is any requirement on the model

size, or space. If we want to run models on any sort of low-memory computing device (smart

phones, watches, tablets, virtual reality devices, etc.) we need to design algorithms that can

flexibly construct models of various sizes, to fit the memory budget at hand. In chapter 3 we

took a close look at the prolific, yet memory-intensive k-nearest neighbor classifier [40], which

requires that we store the entire training set for classification. We designed a continuous

relaxation to the 1-nearest neighbor rule using the stochastic neighborhood [86]. Directly

minimizing this surrogate for nearest neighbor classification error allowed our method to

achieve the same generalization error as the full training dataset with a small fraction of

the data points (in some cases as low as 4% of the full dataset). Important future work

would be theoretical results that provide guarantees about trade-offs between compression

and generalization accuracy of the approach.

The third fact that prevents machine learning from weighing in on practical problems is data

privacy. One huge field that stands to benefit from machine learning techniques is health

care. Unfortunately, obtaining patient data is notoriously difficult due to its extremely sen-

sitive nature. Indeed most countries require an arduous review process for gathering and/or

collecting health records (e.g., as dictated by Health Insurance Portability and Accountabil-

ity Act in the United States [6]). In chapter 4 we addressed the problem of determining

the causal relationship between two random variables of interest while maintaining data pri-

vacy. We showed how privatizing a recently popular framework for causal inference called

the additive noise model (ANM) [89] leads to inferences that with high probability match

the non-private causal inferences. To the best of our knowledge there is no prior work that

considers how to perform causal inference on sensitive data while protecting data privacy.

There is much space for future research. An important next step is to consider privatizing

multivariate causal inference methods such as those described by [159] and [135].

92



Machine learning has recently begun to address the gap between research and practice,

alongside the work in this thesis. There has been an exciting amount of work on resource-

efficient or budgeted or cost-sensitive learning in the last few years. This includes work in

supervised learning [112, 83, 35, 186, 185, 177], structured prediction [182, 24], Bayesian

optimization [158, 66], and bandit algorithms [80], among others. There are however many

necessary avenues for future research. (1) In nearly all of the prior work, we assume that

costs are known ahead of time; that they can be estimated from a training set. There are

many possible scenarios in which the costs may vary wildly such that a training estimate

may only provide a rough guess of the true cost at test time. One example is the cost of

a medical procedure: while simple, routine examinations have clearly-standardized costs,

more complicated procedures such as a coronary artery bypass surgery can vary in cost

due to many factors. First, the location of the operation itself can change depending on

the person. Second, the time to complete the operation can change. Third, where the

operation takes place (e.g., at a new medical facility versus an older medical facility) affects

the cost as well. Future algorithms need to carefully consider how to address these types of

fluctuating costs. (2) Significant effort needs to be put towards obtaining real-world resource-

efficient benchmark datasets (e.g., the equivalent of MNIST for object recognition). In

general, there are two primary resource-efficient datasets that have been used multiple times:

the Yahoo Learning to Rank datasets, originally from [35], and the Scene 15 recognition

dataset, originally described with feature costs in [186]. The majority of follow-up work in

supervised learning has used either of these datasets [184, 129] or used UCI datasets [114] and

consider cost as simply the number of used features, or have random costs [83, 184, 176, 129].

Because these datasets are somewhat specialized (one is web-search ranking and the other

is scene recognition), have multiple versions (there are at least two different versions of the

Yahoo dataset: binary vs. non-binary) and some are not even truly cost-sensitive, it makes

it difficult to compare different algorithms. The remaining work that does not use these

93



datasets uses specialized datasets that are either not public or have non-public costs, which

also makes comparison difficult. For the field to flourish (in a similar way that deep learning

has flourished using MNIST, CIFAR, and ImageNet datasets), there should be an effort to

construct standard benchmark datasets, as well as evaluation metrics for comparing different

resource-efficient algorithms.

Techniques to shrink the size of machine learning models have also recently received much

attention. In 2006, Bucilu et al. [28], were the first to consider model compression; they

compressed large ensembles of machine learning classifiers by training small neural networks

to match their performance [28]. Nearly 10 years later Ba & Caruana [9] were also able to

compress deep neural networks to small ones. Inspired by this work Hinton et al., developed

‘distillation’ in which the costly deep neural network’s predictions are properly smoothed to

allow the smaller compressed network to accurately learn the complex decision function of

the large network [87]. This work has inspired many follow-up deep learning papers including

works in compressing deep reinforcement learning models [144], hashed deep networks [36,

79], and Bayesian posterior distillation [105], and even word embeddings [127]. There has

also been work towards compressing neural models using kernel tricks [187] and using binary-

valued weight vectors (as opposed to double-precision floating-point) [102, 140]. However,

there are still many unexplored areas in model shrinking. (1) In large part, most of the

current work is focused on compressing deep neural networks. While such models are popular,

they are in large part parametric models, and thus the number of parameters they learn is

fixed. Thus, as long as we can learn a model with few parameters that approximates a large

model (e.g, as is done in distillation [87]) we have successfully compressed the model. In

contrast, non-parametric models grow as the size of the training set grows, rendering these

models impossible for small devices. Research into how to compress such models is still

sparse [11], but necessary if machine learning is to be successfully used on small embedded

94



devices. (2) Current models have mostly considered compressing models during training

time so that models fit during test time, when they are evaluated. However, models may

need to be retrained on devices and so it may be crucial to consider how to learn compressed

datasets, that can be modified and used for retraining as needed.

Differentially private machine learning models first began appearing around 2008, when

Chaudhuri et al. first derived methods for performing differentially private empirical risk

minimization [33] (the first version appeared in NIPS 2008). It was followed by work in

private robust statistics [54], private boosting [58], private online learning [93], private prin-

cipal components analysis [34, 59], private LASSO [156, 165], private Gaussian processes

[157], and private deep learning [152, 2]. At the same time there has been recent exciting

work in encrypted machine learning [134, 75, 183, 7, 51]. Despite the proliferation of private

machine learning techniques there are still fundamental problems that need solving. (1) In

differential privacy, there is always a hyperparameter that fixes the level of privacy ε (and,

if applicable δ). For the Laplace mechanism [55], this controls the scale of Laplace noise

added to the quantity we wish to keep private. In theory, setting ε gives practitioners a

flexible way to control how much private information is leaked to the public, regardless of

the tools or side-information any adversary has at his/her disposal. In practice, it is not clear

how to set this hyperparameter to ensure that data is kept ‘sufficiently private’. One recent

work considers setting ε by introducing two other hyperparameters which describes (a) the

probability that the true parameter lies (b) within an interval [128]. Upon choosing these

parameters, ε can be automatically decided. In general, differential privacy needs to derive

an intuitive way to set ε for the task at hand. (2) For cryptographic methods, there is a dire

need for methods that are simultaneously private, require reasonable memory usage, and

are computationally efficient. Current machine learning methods use variants of fully homo-

morphic encryption [70], which usually require memory many times larger than the dataset

95



size and can take hours to perform simple operations. The recent promising work of [51]

achieved a surprising amount of parallelism, enabling practical classification of the MNIST

with deep networks. One of the drawbacks however was that most of the non-linearities were

replaced with quadratic approximations as multiplication depth is the most costly part of

the encryption process.

In total, machine learning has come a long way towards addressing practical problems.

The hope of this thesis is to motivate the ML community to think about how to solve such

problems that arise when applying machine learning in the real world; by designing principled

techniques, given objectives and constraints of the task at hand.

96



Appendix A

Privacy Proofs of Chapter 4

Proof of Theorem 4. Let x1 ∼ Lap(µ1, σ) and x2 ∼ Lap(µ2, σ) be two independent Laplace

random variables with µ1 < µ2, then the probability of failure is Pr(x1 > x2). We would

like to compute the probability of failure in closed form. We know that by independence,

the joint probability is equal to the product of marginal probabilites. We also know that the

Laplace cdf. is

F (x;µ, σ) =





F1(x;µ, σ) = 1
2

exp(x−µ
σ

) if x ≤ µ

F2(x;µ, σ) = 1− 1
2

exp(−x−µ
σ

) if x > µ

where F1 and F2 are only defined on the specified domains. There are six mutually exclusive

and collective exhaustive ways for which a failure could happen:

1○µ1 < x2 < x1 < µ2

2○x2 < µ1 < µ2 < x1

3○µ1 < x2 < µ2 < x1

4○x2 < µ1 < x1 < µ2

97



5○µ1 < µ2 < x2 < x1

6○x2 < x1 < µ1 < µ2

By symmetry of the Laplace distribtuion, we know that Pr( 3○) = Pr( 4○) and Pr( 5○) =

Pr( 6○). Thus we only need to calculate Pr( 1○),Pr( 2○),Pr( 3○), and Pr( 5○).

Pr( 1○) =

∫ µ2

µ1

∫ µ2

x2

p(x1)p(x2)dx1dx2 =

∫ µ2

µ1

[F2(µ2;µ1, σ)− F2(x2;µ1, σ)]p(x2)dx2

Now consider the quantity being integrated, which is equal to

−1

2
exp(−µ2 − µ1

σ
)p(x2) +

1

2
exp(−x2 − µ1

σ
)p(x2)

︸ ︷︷ ︸
?

The right-hand term is,

? =
1

2
exp(−x2 − µ1

σ
)

1

2σ
exp(−µ2 − x2

σ
) =

1

4σ
exp(−µ2 − µ1

σ
)

since x2 < µ2. So we have that,

Pr( 1○) =
µ2 − µ1

4σ
exp(−µ2 − µ1

σ
)− 1

2
exp(−µ2 − µ1

σ
)

∫ µ2

µ1

p(x2)

=
µ2 − µ1

4σ
exp(−µ2 − µ1

σ
)− 1

2
exp(−µ2 − µ1

σ
)[

1

2
− F1(µ1;µ2, σ)]

Next, we have that

Pr( 2○) = Pr(x1 > µ2) Pr(x2 < µ1)

= (1− F2(µ2;µ1, σ))F1(µ1;µ2, σ)

=
1

2
exp(−µ2 − µ1

σ
)F1(µ1;µ2, σ)

98



And similarly,

Pr( 3○) = Pr(x1 > µ2) Pr(µ1 < x2 < µ2)

= (1− F2(µ2;µ1, σ))[
1

2
− F1(µ1;µ2, σ)]

=
1

2
exp(−µ2 − µ1

σ
)[

1

2
− F1(µ1;µ2, σ)]

and as stated, Pr( 4○) is the same. Moving on,

Pr( 5○) =

∫ ∞

µ2

∫ ∞

x2

p(x1)p(x2)dx1dx2

=

∫ ∞

µ2

[1− F2(x2;µ1, σ)]p(x2)dx2

=

∫ ∞

µ2

1

2
exp(−x2 − µ1

σ
)

1

2σ
exp(−x2 − µ2

σ
)dx2

=
1

4

∫ ∞

µ2

1

2(σ/2)
exp(−x2 − (µ1 + µ2)/2

σ/2
)dx2

=
1

4
(1− F2(µ2;µ

′, σ′))

=
1

8
exp(−µ2 − (µ1 + µ2)/2

σ/2
) =

1

8
exp(−µ2 − µ1

σ
)

and as stated, Pr( 6○) is the same. So lastly,

Pr(x1 > x2) = 2 Pr( 5○) + 2 Pr( 3○) + Pr( 2○) + Pr( 1○) =
µ2 − µ1 + 2σ

4σ
exp(−µ2 − µ1

σ
)

This completes the derivation.

Proof of Tighter HSIC bound (described after Theorem 5). For simpler notation, let D be

the original dataset and D′ be the dataset with one column modified. We subscript HSIC

99



with l and k implicitly. This is the quantity of interest

| ˆHSIC(D)− ˆHSIC(D′)| = 1

(N − 1)2
|tr(K ′HL′H)− tr(KHLH)|

Pulling out the constant, we have

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|

= |tr(K ′HL′H)− tr(KHLH)|

= |tr((K ′HL′ −KHL)H)| linearity of trace

= |tr(H(K ′HL′ −KHL))| cyclicity of trace

Let 1 be the square matrix of ones(N). We know that since H = I − 1
N

1 by definition,

H(K ′HL′ −KHL) = (K ′HL′ −KHL)− 1

N
1(K ′HL′ −KHL)

so we have that

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)| = |tr(K ′HL′ −KHL)− 1

N
tr(1(K ′HL′ −KHL))|

(A.1)

Next, we need three identities. Let sum(A) =
∑

i,j Aij, then

Identity 1: tr(1A) = sum(A)

Identity 2: tr(1A1B) = sum(A)sum(B)

Identity 3: sum(AB) = sum(BA)

100



Where Identity 3 holds only for symmetric matrices. Identity 3 is obvious since AB = (BA)T

and sum(C) = sum(CT ), while the first two can be proven by expanding out the matrices

and using the row-column rule, or just trying random matrices on MATLAB until you believe

that it works. I did both, they are sure to be correct.

And again from the definition of H, we know that

KHL = K(L− 1

N
1L) = KL− 1

N
K1L

so

K ′HL′ −KHL = (K ′L′ − 1

N
K ′1L′)− (KL− 1

N
K1L)

Now we continue our derivation of eq. (A.1)

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)| = |tr(K ′HL′ −KHL)︸ ︷︷ ︸
?

− 1

N
sum(K ′HL′ −KHL)|

︸ ︷︷ ︸
�

We can rewrite each term ? and � using our traces identities as follows,

? = [tr(K ′L′)− 1

N
sum(L′K ′)]− [tr(KL)− 1

N
sum(LK)]

� =
1

N
[sum(K ′L′ − 1

N
K ′1L′)− sum(KL− 1

N
K1L)]

=
1

N
[sum(K ′L′)− 1

N
sum(K ′1L′)]

− 1

N
[sum(KL)− 1

N
sum(K1L)]

101



By identity 3, we see that the sum(KL) and sum(LK) as well as the sum(K ′L′) and

sum(L′K ′) terms in ? and � are identical. Thus we are left with

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)| = ?− �

= |[tr(K ′L′)− tr(KL)]

− 2

N
[sum(K ′L′)− sum(KL)]

+
1

N
[

1

N
sum(K ′1L′)− 1

N
sum(K1L)]|

= |[sum(K ′. ∗ L′)− sum(K. ∗ L)]

− 2

N
[sum(K ′L′)− sum(KL)]

+
1

N2
[sum(K ′)sum(L′)− sum(K)sum(L)]| (A.2)

where the last line comes from applying Identity 1 backwards so we have, for example,

tr(1K1L), then applying Identity 2. We use MATLAB© notation .∗ for the element-wise

product of two matrices.

We bound eq. (A.2) by the triangle inequality,

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|

≤ |sum(K ′. ∗ L′)− sum(K. ∗ L)| 1○

+
2

N
|sum(K ′L′)− sum(KL)| 2○

+
1

N2
|sum(K ′)sum(L′)− sum(K)sum(L)| 3○

102



(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|

≤ [ 1○ + 2○ + 3○] ≤ max
K,K′,L,L′

1○ + max
K,K′,L,L′

2○ + max
K,K′,L,L′

3○

Recall that the kernels k and l are bounded by 1. And that the kernel pairs K,K ′ and L,L′

differ in at most one row and column. Thus, for 1○, it is clear that the maximum occurs

when a row and column c (no matter what c is) is changed from all 0 to 1 in both L and K,

so max
K,K′,L,L′

1○ = 2N − 1

For 3○, the maximum occurs at exactly same the point as 1○, and the value achieved is

1

N2
[N4 − (N2 − 2N + 1)2] ≤ 4N − 5

for N > 3. For 2○, applying the row-column rule and reasoning on small matrices inductively

suggest that the maximum is also achieved when we change one row and column of L and

K from all 0 to 1, and is thus

2

N
[N2 + (N − 1)(2N − 1)] ≤ 6N − 5

for N ≥ 2. As the argmax of all three terms coincide, we have that

max
C

[ 1○ + 2○ + 3○] = max
C

1○ + max
C

2○ + max
C

3○

Therefore, we have derived that for all practical purposes, the overall bound is 12N−11
N2−1 .

Proof of Theorem 7.

|r(i)Y
′ − r̃(i)Y | =

∣∣w>φ(X)− w̃>φ(X)
∣∣ ≤ ‖w − w̃‖H‖φ(X)‖H ≤ ‖w − w̃‖H (A.3)

103



In the above we used the fact that ‖φ(X)‖H =
√
K(x, x) ≤ 1. On the other hand note that

w is the minimizer of regularized objective on data set (x(1), y(1)), . . . , (x(n), y(n)) and w̃ is the

minimizer on set (x(1), y(1)), . . . , (x(n−1), y(n−1)), (x(n)
′
, y(n)

′
) (we assume the last coordinate

is the one that is changes w.l.o.g.). By strong convexity of the regularized objective we have,

λ

2
‖w − w̃‖2 ≤ λ

2
‖w̃‖2H +

1

n

n∑

i=1

(w̃>φ(x(i))− y(i))2 − λ

2
‖w‖2H −

1

n

n∑

i=1

(w>φ(x(i))− y(i))2

≤ λ

2
‖w̃‖2H +

1

n

n−1∑

i=1

(w̃>φ(x(i))− y(i))2 + (w̃>φ(x̃(n))− ỹ(n))2

− λ

2
‖w‖2H −

1

n

n−1∑

i=1

(w>φ(x(i))− y(i))2 − (w>φ(x̃(n))− ỹ(n))2

+
1

n
(w̃>φ(x(n))− y(n))2 − (w>φ(x(n))− y(n))2

− 1

n
(w̃>φ(x̃(n))− ỹ(n))2 + (w>φ(x̃(n))− ỹ(n))2

≤ 2

n
sup

x,y∈[−1,1]

(
(w̃>φ(x)− y)2 − (w>φ(x)− y)2

)

≤ 2

n
‖w̃ −w‖ × (‖w̃‖+ ‖w‖+ 2)

Now note that since 0 ∈ H we can conclude that,

‖w‖ ≤ 1√
λ

(The above is got by plugging in the 0 in the regularized objective which yields a value of

1 and since loss is non-negative, we can conclude that the norm of the minimizer of the

regularized objective is at most 1/
√
λ. Plugging this in yields:

‖w − w̃‖ ≤ 8

λ3/2n

Plugging this in Eq. A.3 yields the theorem.

104



Appendix B

Grants

I would like to thank and acknowledge the grants that have funded me throughout my

graduate study including: NIH grant U01 1U01NS073457-01, NSF grants IIS-1149882, EFRI-

1137211, IIA-1355406, III-1526012, and III-1618134.

105



References

[1] A face is exposed for aol searcher no. 4417749. http://search-id.com/user/

4417749-thelma_arnold. Accessed: 2016-05-28.

[2] Mart́ın Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Ku-
nal Talwar, and Li Zhang. Deep learning with differential privacy. arXiv preprint
arXiv:1607.00133, 2016.

[3] Mohamed Aly, Mario Munich, and Pietro Perona. Indexing in large scale image col-
lections: Scaling properties and benchmark. In WACV, pages 418–425. IEEE, 2011.

[4] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In FOCS, pages 459–468. IEEE, 2006.

[5] F. Angiulli. Fast condensed nearest neighbor rule. In ICML, pages 25–32, 2005.

[6] George J Annas. Hipaa regulations-a new era of medical-record privacy? New England
Journal of Medicine, 348(15):1486–1490, 2003.

[7] Louis JM Aslett, Pedro M Esperança, and Chris C Holmes. Encrypted statistical
machine learning: new privacy preserving methods. arXiv preprint arXiv:1508.06845,
2015.

[8] Mordecai Avriel. Nonlinear programming: analysis and methods. Courier Corporation,
2003.

[9] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, pages
2654–2662, 2014.

[10] Francis Bach. Learning with submodular functions: A convex optimization perspective.
arXiv preprint arXiv:1111.6453, 2011.

[11] Olivier Bachem, Mario Lucic, and Andreas Krause. Coresets for nonparametric esti-
mationthe case of dp-means. In ICML, 2015.

[12] Wenruo Bai, Rishabh Iyer, Kai Wei, and Jeff Bilmes. Algorithms for optimizing
the ratio of submodular functions. In International Conference on Machine Learn-
ing (ICML), New York, NY, July 2016.

[13] Sergey Bakin. Adaptive regression and model selection in data mining problems. 1999.

106

http://search-id.com/user/4417749-thelma_arnold
http://search-id.com/user/4417749-thelma_arnold


[14] S. Bandyopadhyay and U. Maulik. Efficient prototype reordering in nearest neighbor
classification. Pattern Recognition, 35(12):2791–2799, 2002.

[15] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples. Journal of
machine learning research, 7(Nov):2399–2434, 2006.

[16] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. PAMI, 24(4):509–522, 2002.

[17] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class
tasks. NIPS, 23:163–171, 2010.

[18] J.L. Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[19] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[20] S. Bermejo and J. Cabestany. Adaptive soft k-nearest-neighbor classifiers. Pattern
Recognition, 32:2077–2979, 1999.

[21] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In
ICML, pages 97–104, 2006.

[22] Yatao Bian, Baharan Mirzasoleiman, Joachim M Buhmann, and Andreas Krause.
Guaranteed non-convex optimization: Submodular maximization over continuous do-
mains. arXiv preprint arXiv:1606.05615, 2016.

[23] C.M. Bishop. Pattern recognition and machine learning. Springer New York, 2006.

[24] Tolga Bolukbasi, Kai-Wei Chang, Joseph Wang, and Venkatesh Saligrama. Resource
constrained structured prediction. arXiv preprint arXiv:1602.08761, 2016.

[25] Léon Bottou. Stochastic learning. In Advanced lectures on machine learning, pages
146–168. Springer, 2004.

[26] Lubomir Bourdev and Jonathan Brandt. Robust object detection via soft cascade. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 236–243. IEEE, 2005.

[27] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[28] Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In KDD, pages 535–541. ACM, 2006.

107



[29] Peter Bühlmann, Jonas Peters, Jan Ernest, et al. Cam: Causal additive models,
high-dimensional order search and penalized regression. The Annals of Statistics,
42(6):2526–2556, 2014.

[30] R. Busa-Fekete, D. Benbouzid, B. Kégl, et al. Fast classification using sparse decision
dags. In ICML, 2012.

[31] Vijay Chandrasekhar, Gabriel Takacs, David Chen, Sam S Tsai, Jatinder Singh, and
Bernd Girod. Transform coding of image feature descriptors. In IS&T/SPIE Electronic
Imaging, 2009.

[32] C.L. Chang. Finding prototypes for nearest neighbor classifiers. IEEE Transactions
on Computers, 100(11):1179–1184, 1974.

[33] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private
empirical risk minimization. JMLR, 12:1069–1109, 2011.

[34] Kamalika Chaudhuri, Anand Sarwate, and Kaushik Sinha. Near-optimal differentially
private principal components. In Advances in Neural Information Processing Systems,
pages 989–997, 2012.

[35] M. Chen, K. Q. Weinberger, O. Chapelle, D. Kedem, and Z. Xu. Classifier cascade for
minimizing feature evaluation cost. In AISTATS, pages 218–226, 2012.

[36] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing neural
networks with the hashing trick. In ICML, 2015.

[37] M. M. Chong, A. Abraham, and M. Paprzycki. Traffic accident analysis using machine
learning paradigms. Informatica (Slovenia), 29(1):89–98, 2005.

[38] Stephan Clémençon, Igor Colin, and Aurélien Bellet. Scaling-up empirical risk mini-
mization: Optimization of incomplete u-statistics. Journal of Machine Learning Re-
search, 17(76):1–36, 2016.

[39] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[40] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

[41] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, volume 1, pages 886–893, 2005.

[42] Abhimanyu Das, Anirban Dasgupta, and Ravi Kumar. Selecting diverse features via
spectral regularization. In Advances in Neural Information Processing Systems 25,
pages 1592–1600, 2012.

108



[43] Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms
for subset selection, sparse approximation and dictionary selection. arXiv preprint
arXiv:1102.3975, 2011.

[44] J.V. Davis, B. Kulis, P. Jain, S. Sra, and I.S. Dhillon. Information-theoretic metric
learning. In ICML, pages 209–216, 2007.

[45] C. Decaestecker. Finding prototypes for nearest neighbour classification by means
of gradient descent and deterministic annealing. Pattern Recognition, 30(2):281–288,
1997.

[46] J. Deng, S. Satheesh, A.C. Berg, and L. Fei-Fei. Fast and balanced: Efficient label
tree learning for large scale object recognition. In NIPS, 2011.

[47] V.S. Devi and M.N. Murty. An incremental prototype set building technique. Pattern
Recognition, 35(2):505–513, 2002.

[48] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering
and normalized cuts. In KDD, pages 551–556. ACM, 2004.

[49] George Diekhoff. Statistics for the social and behavioral sciences: Univariate, bivariate,
multivariate. Wm. C. Brown Publishers Dubuque, IA, 1992.

[50] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
Proceedings of the SIGMOD-SIGACT-SIGART symposium on principles of database
systems, pages 202–210. ACM, 2003.

[51] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying neural networks to encrypted data with
high throughput and accuracy. In Proceedings of The 33rd International Conference
on Machine Learning, pages 201–210, 2016.

[52] M. Dredze, R. Gevaryahu, and A. Elias-Bachrach. Learning fast classifiers for image
spam. In proceedings of the Conference on Email and Anti-Spam (CEAS), 2007.

[53] George H Dunteman. Principal components analysis. Number 69. Sage, 1989.

[54] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 371–380.
ACM, 2009.

[55] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography, pages 265–284.
Springer, 2006.

[56] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Theoretical Computer Science, 9(3-4):211–407, 2013.

109



[57] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[58] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy.
In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,
pages 51–60. IEEE, 2010.

[59] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss:
Optimal bounds for privacy-preserving principal component analysis. In STOC, 2014.

[60] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The
Annals of Statistics, 32(2):407–499, 2004.

[61] Centers for Disease Control, Prevention, et al. How tobacco smoke causes disease: The
biology and behavioral basis for smoking-attributable disease: A report of the surgeon
general. Centers for Disease Control and Prevention (US), 2010.

[62] John B Fraleigh and Raymond A Beauregard. Linear algebra. add0ison, 1987.

[63] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational
learning theory, pages 23–37. Springer, 1995.

[64] Nir Friedman and Iftach Nachman. Gaussian process networks. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, pages 211–219. Morgan
Kaufmann Publishers Inc., 2000.

[65] T. Gao and D. Koller. Active classification based on value of classifier. In NIPS, pages
1062–1070. 2011.

[66] J. Gardner, M. Kusner, Z. Xu, K. Q. Weinberger, and J. Cunningham. Bayesian
optimization with inequality constraints. In ICML, pages 937–945, 2014.

[67] G.W. Gates. The reduced nearest neighbor rule. IEEE Transactions on Information
Theory, 18:431–433, 1972.

[68] Philipp Geiger, Dominik Janzing, and Bernhard Schölkopf. Estimating causal effects
by bounding confounding. In Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence, pages 240–249, 2014.

[69] Philipp Geiger, Kun Zhang, Bernhard Schoelkopf, Mingming Gong, and Dominik Janz-
ing. Causal inference by identification of vector autoregressive processes with hidden
components. In ICML, pages 1917–1925, 2015.

[70] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009.

110



[71] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Illu-
mination cone models for face recognition under variable lighting and pose. PAMI,
23(6):643–660, 2001.

[72] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimen-
sions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[73] J. Goldberger, G.E. Hinton, S.T. Roweis, and R. Salakhutdinov. Neighbourhood com-
ponents analysis. In NIPS, pages 513–520. 2004.

[74] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applica-
tions in active learning and stochastic optimization. Journal of Artificial Intelligence
Research, 42(1):427–486, 2011.

[75] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine learning
on encrypted data. In International Conference on Information Security and Cryptol-
ogy, pages 1–21. Springer, 2012.

[76] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring
statistical dependence with hilbert-schmidt norms. In Algorithmic learning theory,
pages 63–77. Springer, 2005.

[77] A. Grubb and J. A. Bagnell. Speedboost: Anytime prediction with uniform near-
optimality. In AISTATS, 2012.

[78] I. Guyon. Cause-effect pairs kaggle competition, 2013.

[79] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2,
2015.

[80] M. K. Hanawal, V. Saligrama, M. Valko, and R. Munos. Cheap bandits. In ICML,
2015.

[81] P.E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, 14:515–516, 1968.

[82] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference and prediction. New York: Springer-Verlag, 1(8):371–
406, 2001.

[83] He He, Jason Eisner, and Hal Daume. Imitation learning by coaching. In Advances in
Neural Information Processing Systems, pages 3149–3157, 2012.

[84] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1026–1034, 2015.

111



[85] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[86] G.E. Hinton and S.T. Roweis. Stochastic neighbor embedding. In NIPS, pages 833–840.
MIT Press, 2002.

[87] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[88] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,
2012.

[89] Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard
Schölkopf. Nonlinear causal discovery with additive noise models. In Advances in
neural information processing systems, pages 689–696, 2009.

[90] Peter J Huber et al. Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35(1):73–101, 1964.

[91] Rishabh Iyer and Jeff Bilmes. Submodular optimization with submodular cover and
submodular knapsack constraints. In Neural Information Processing Society (NIPS),
Lake Tahoe, CA, December 2013.

[92] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online
learning. COLT, 2012.

[93] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online
learning. In COLT, volume 23, pages 24–1, 2012.

[94] Prateek Jain and Abhradeep Thakurta. Differentially private learning with kernels.
In Proceedings of the 30th International Conference on Machine Learning (ICML-13),
pages 118–126, 2013.

[95] Dominik Janzing, Joris Mooij, Kun Zhang, Jan Lemeire, Jakob Zscheischler, Povilas
Daniušis, Bastian Steudel, and Bernhard Schölkopf. Information-geometric approach
to inferring causal directions. Artificial Intelligence, 182:1–31, 2012.

[96] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[97] Shihao Ji and Lawrence Carin. Cost-sensitive feature acquisition and classification.
Pattern Recognition, 40(5):1474–1485, 2007.

[98] Richard Arnold Johnson and Dean W Wichern. Applied multivariate statistical anal-
ysis, volume 5. Prentice hall Upper Saddle River, NJ, 2002.

112



[99] Pallika Kanani and Prem Melville. Prediction-time active feature-value acquisition for
cost-effective customer targeting. Advances In Neural Information Processing Systems
(NIPS), 2008.

[100] Yutaka Kano and Shohei Shimizu. Causal inference using nonnormality. In Proceedings
of the International Symposium on Science of Modeling, the 30th Anniversary of the
Information Criterion, pages 261–270, 2003.

[101] Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. Timely object
recognition. In Advances in Neural Information Processing Systems, pages 890–898,
2012.

[102] Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint
arXiv:1601.06071, 2016.

[103] T. Kohonen. Improved versions of learning vector quantization. In IJCNN, pages
545–550. IEEE, 1990.

[104] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[105] A. Korattikara, V. Rathod, K. Murphy, and M. Welling. Bayesian dark knowledge.
arXiv preprint arXiv:1506.04416, 2015.

[106] M. Kowalski. Sparse regression using mixed norms. Applied and Computational Har-
monic Analysis, 27(3):303–324, 2009.

[107] Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, and Bernhard Schölkopf. Consis-
tency of causal inference under the additive noise model. In ICML, 2014.

[108] Andreas Krause and Volkan Cevher. Submodular dictionary selection for sparse rep-
resentation. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 567–574, 2010.

[109] Andreas Krause and Carlos E Guestrin. Near-optimal nonmyopic value of information
in graphical models. arXiv preprint arXiv:1207.1394, 2012.

[110] Matt Kusner, Stephen Tyree, Kilian Q Weinberger, and Kunal Agrawal. Stochastic
neighbor compression. In ICML, pages 622–630, 2014.

[111] Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y Ng. Efficient l˜ 1 regularized
logistic regression. In Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 401. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2006.

[112] L. Lefakis and F. Fleuret. Joint cascade optimization using a product of boosted
classifiers. In NIPS, pages 1315–1323. 2010.

113



[113] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des
comètes. Number 1. F. Didot, 1805.

[114] M. Lichman. UCI machine learning repository, 2013.

[115] C. L. Liu and M. Nakagawa. Prototype learning algorithms for nearest neighbor classi-
fier with application to handwritten character recognition. In ICDAR, pages 378–381.
IEEE, 1999.

[116] David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin. To-
wards a learning theory of cause-effect inference. In ICML, 2015.

[117] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004.

[118] Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, and Andreas Krause. Hor-
izontally scalable submodular maximization. In Proc. International Conference on
Machine Learning (ICML), July 2016.

[119] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
FOCS, pages 94–103. IEEE, 2007.

[120] Marina MeilPa and Jianbo Shi. Learning segmentation by random walks. In Neural
Information Processing Systems, 2001.

[121] Scott Menard. Applied logistic regression analysis. Number 106. Sage, 2002.

[122] Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural networks, 6(4):525–533, 1993.

[123] R.A. Mollineda, F.J. Ferri, and E. Vidal. An efficient prototype merging strategy
for the condensed 1-nn rule through class-conditional hierarchical clustering. Pattern
Recognition, 35(12):2771–2782, 2002.

[124] Joris M Mooij, Dominik Janzing, Tom Heskes, and Bernhard Schölkopf. On causal dis-
covery with cyclic additive noise models. In Advances in neural information processing
systems, pages 639–647, 2011.

[125] Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard
Schölkopf. Distinguishing cause from effect using observational data: methods and
benchmarks. arXiv preprint arXiv:1412.3773, 2014.

[126] Joris M Mooij, Oliver Stegle, Dominik Janzing, Kun Zhang, and Bernhard Schölkopf.
Probabilistic latent variable models for distinguishing between cause and effect. In
Advances in Neural Information Processing Systems, pages 1687–1695, 2010.

[127] Lili Mou, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. Distilling word embeddings: An
encoding approach. arXiv preprint arXiv:1506.04488, 2015.

114



[128] Maurizio Naldi and Giuseppe D’Acquisto. Differential privacy: An estimation theory-
based method for choosing epsilon. arXiv preprint arXiv:1510.00917, 2015.

[129] Feng Nan, Joseph Wang, and Venkatesh Saligrama. Feature-budgeted random forest.
In ICML, 2015.

[130] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets.
In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages 111–125. IEEE,
2008.

[131] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functionsi. Mathematical Programming, 14(1):265–294,
1978.

[132] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sam-
pling in private data analysis. In Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing, pages 75–84. ACM, 2007.

[133] S.M. Omohundro. Five balltree construction algorithms. International Computer Sci-
ence Institute, Berkeley, 1989.

[134] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious neural network comput-
ing via homomorphic encryption. EURASIP Journal on Information Security, 2007:18,
2007.

[135] Judea Pearl. Causality: models, reasoning, and inference. 2000.

[136] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[137] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discov-
ery with continuous additive noise models. The Journal of Machine Learning Research,
15(1):2009–2053, 2014.

[138] J. Pujara, H. Daumé III, and L. Getoor. Using classifier cascades for scalable e-mail
classification. In CEAS, 2011.

[139] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for ma-
chine learning. 2006.

[140] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. arXiv preprint
arXiv:1603.05279, 2016.

[141] Hans Reichenbach and Maria Reichenbach. The direction of time. Univ of California
Press, 1956.

115



[142] Peter Richtarik and Mark Schmidt. Modern convex optimization methods for large-
scale empirical risk minimization. In ICML, 2015.

[143] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[144] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia
Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[145] M. Saberian and N. Vasconcelos. Boosting classifier cascades. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, NIPS, pages 2047–
2055. 2010.

[146] S. Salzberg, A.L. Delcher, D. Heath, and S. Kasif. Best-case results for nearest-neighbor
learning. PAMI, 17(6):599–608, 1995.

[147] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduc-
tion in recommender system-a case study. Technical report, DTIC Document, 2000.

[148] Eleni Sgouritsa, Dominik Janzing, Philipp Hennig, and Bernhard Schölkopf. Inference
of cause and effect with unsupervised inverse regression. In AISTATS, pages 847–855,
2015.

[149] Naji Shajarisales, Dominik Janzing, Bernhard Shoelkopf, and Michel Besserve. Telling
cause from effect in deterministic linear dynamical systems. In ICML, 2015.

[150] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic
convex optimization. In COLT, 2009.

[151] Victor S Sheng and Charles X Ling. Feature value acquisition in testing: a sequential
batch test algorithm. In Proceedings of the 23rd international conference on Machine
learning, pages 809–816. ACM, 2006.

[152] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 1310–1321. ACM, 2015.

[153] P. Simard, Y. LeCun, and J.S. Denker. Efficient pattern recognition using a new
transformation distance. In NIPS, pages 50–58, 1992.

[154] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015.

116



[155] Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Noisy submodular max-
imization via adaptive sampling with applications to crowdsourced image collection
summarization. In Proc. Conference on Artificial Intelligence (AAAI), February 2016.

[156] Adam Smith and Abhradeep Thakurta. Differentially private feature selection via
stability arguments, and the robustness of the lasso. In Proceedings of Conference on
Learning Theory, 2013.

[157] Michael Thomas Smith, Max Zwiessele, and Neil D Lawrence. Differentially private
gaussian processes. arXiv preprint arXiv:1606.00720, 2016.

[158] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In NIPS, pages 2951–2959, 2012.

[159] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and
search, volume 81. MIT press, 2000.

[160] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine
learning. Mit Press, 2012.

[161] M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions.
Technical report, DTIC Document, 2007.

[162] Xiaohai Sun, Dominik Janzing, and Bernhard Schölkopf. Causal reasoning by evalu-
ating the complexity of conditional densities with kernel methods. Neurocomputing,
71(7):1248–1256, 2008.

[163] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[164] Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Private empirical risk minimization
beyond the worst case: The effect of the constraint set geometry. arXiv preprint
arXiv:1411.5417, 2014.

[165] Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Nearly optimal private lasso. In
Advances in Neural Information Processing Systems, pages 3025–3033, 2015.

[166] D. Tarlow, K. Swersky, L. Charlin, I. Sutskever, and R. Zemel. Stochastic k-
neighborhood selection for supervised and unsupervised learning. In ICML, pages
199–207, 2013.

[167] C-Y Teng, Y-R Lin, and L. A. Adamic. Recipe recommendation using ingredient
networks. In Proceedings of the 4th Annual ACM Web Science Conference, pages
298–307. ACM, 2012.

117



[168] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[169] I. Tomek. Two modifications of cnn. IEEE Trans. on Systems, Man, and Cybernetics,
(11):769–772, 1976.

[170] G.T. Toussaint. Proximity graphs for nearest neighbor decision rules: recent progress.
Interface, 34, 2002.

[171] D. Tran and A. Sorokin. Human activity recognition with metric learning. In ECCV,
pages 548–561. Springer, 2008.

[172] Kirill Trapeznikov and Venkatesh Saligrama. Supervised sequential classification under
budget constraints. In AISTATS, pages 581–589, 2013.

[173] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 9(2579-
2605):85, 2008.

[174] P. Viola and M.J. Jones. Robust real-time face detection. IJCV, 57(2):137–154, 2004.

[175] J. Wang and V. Saligrama. Local supervised learning through space partitioning. In
Advances in Neural Information Processing Systems 25, pages 91–99, 2012.

[176] Joseph Wang, Kirill Trapeznikov, and Venkatesh Saligrama. An lp for sequential
learning under budgets. In AISTATS, pages 987–995, 2014.

[177] Joseph Wang, Kirill Trapeznikov, and Venkatesh Saligrama. Efficient learning by
directed acyclic graph for resource constrained prediction. In Advances in Neural
Information Processing Systems, pages 2152–2160, 2015.

[178] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[179] Kilian Q Weinberger, Fei Sha, Qihui Zhu, and Lawrence K Saul. Graph laplacian
regularization for large-scale semidefinite programming. In NIPS, pages 1489–1496,
2006.

[180] K.Q. Weinberger and L.K. Saul. Fast solvers and efficient implementations for distance
metric learning. In ICML, pages 1160–1167, 2008.

[181] K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest
neighbor classification. JMLR, 10:207–244, 2009.

[182] David J Weiss and Ben Taskar. Learning adaptive value of information for structured
prediction. In Advances in Neural Information Processing Systems, pages 953–961,
2013.

118



[183] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin Lauter, and
Michael Naehrig. Crypto-nets: Neural networks over encrypted data. arXiv preprint
arXiv:1412.6181, 2014.

[184] Z. Xu, M. J. Kusner, M. Chen, and K. Q. Weinberger. Cost-sensitive tree of classifiers.
In ICML, 2013.

[185] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Budgeted learning
with trees and cascades. JMLR, 2014.

[186] Z. Xu, K. Q. Weinberger, and O. Chapelle. The greedy miser: Learning under test-time
budgets. In ICML, 2012.

[187] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang.
Deep fried convnets. In CVPR, pages 1476–1483, 2015.

[188] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67, 2006.

[189] Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal
model. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pages 647–655. AUAI Press, 2009.

[190] Navid Zolghadr, Gábor Bartók, Russell Greiner, András György, and Csaba
Szepesvári. Online learning with costly features and labels. In Advances in Neural
Information Processing Systems, pages 1241–1249, 2013.

119


	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Chapter Introduction
	Motivation
	Real-World Examples

	Mathematical Background
	Empirical Risk Minimization
	Submodularity


	Chapter Cost: Explicitly optimizing the accuracy/time-cost trade-off
	Approximately Submodular Tree of Classifiers
	Resource-Efficient Learning
	A Simple Example
	Cost-Sensitive Tree of Classifiers (CSTC)
	A Simplier Tree-Based Model
	Greedy Optimization
	Fast Selection via QR-Decomposition
	Experimental Results

	Related Work
	Cost-Sensitive Regularization
	Cascades
	Tree-Based Models
	Decision-Making Schemes
	Submodularity

	Conclusion

	Chapter Space: A model for compressing the k-nearest neighbor rule
	Stochastic Neighbor Compression
	The Stochastic Neighborhood
	How to Compress a Dataset
	Metric Learning Extension
	Experimental Results

	Related Work
	Training Set Consistent Sampling
	Prototype Generation
	Prototype Positioning
	Gaussian Methods

	Conclusions

	Chapter Privacy: Protecting individual privacy in causal inference
	Motivation
	Private Causal Inference
	Prior Art
	Causal Inference & Privacy
	Additive Noise Model
	Inferring Causality
	Dependence Scores
	Differential Privacy
	Test Set Privacy
	Training Set Privacy
	Experimental Results

	Related Work
	Bivariate Causal Inference
	Classical Methods

	Conclusion

	Chapter Discussion and Future Directions
	Appendix Privacy Proofs of Chapter 4
	Appendix Grants

