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Abstract

We address the problem of unsupervised domain
adaptation when the source differs from the target
because of a shift in the distribution of a latent
confounder. In this case, neither covariate shift
nor label shift assumptions apply. When all data is
discrete, we show that the optimal target predictor
can be non-parametrically identified with the help
of concept and proxy variables, available only in
the source, and unlabeled data from the target.

1. Introduction
Distribution shift is a fact of many real-world machine learn-
ing systems. For example, imagine we have trained a disease
prediction model on patients of Hospital P and would like
to apply it to patients of Hospital Q. However, these hospi-
tals differ in their patient populations along socioeconomic,
demographic, and other axes (Finlayson et al., 2021). How
can we find the optimal predictor for Hospital Q, given only
labelled data from Hospital P and unlabelled data from
Hospital Q? This is the problem of unsupervised domain
adaptation (Huang et al., 2006). Without any assumptions on
the shift, this question is impossible to answer: the mapping
from features X to labels Y could differ across hospitals
in arbitrary ways. To address this, one of the most popular
assumptions placed on distribution shift is to localize the
shift between distributions P and Q in the features (covari-
ates) X , i.e., covariate shift: p(X) 6= q(X). There has been
a large body of work devoted to estimating predictors for
Q under this setting (Shimodaira, 2000; Zadrozny, 2004;
Huang et al., 2006; Gretton et al., 2009; Bickel et al., 2009;
Chen et al., 2016; Schneider et al., 2020). The key obser-
vation is that under this assumption p(Y | X) = q(Y | X).
Therefore, if one makes the source data appear like the tar-
get data (e.g., by reweighing the source classifier loss by
q(X)/p(X)), one can learn an accurate target classifier.
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A similar assumption is to localize the shift in the labels
Y , i.e., label shift: p(Y ) 6= q(Y ), p(X | Y ) = q(X | Y )
(Gart & Buck, 1966; Manski & Lerman, 1977; Rosenbaum
& Rubin, 1983; Saerens et al., 2002; Forman, 2008; Lipton
et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al.,
2020; Garg et al., 2020; Tachet des Combes et al., 2020).
Here one can use a similar approach: learn q(Y )/p(Y ) and
use it to reweigh a source classifier, adapting it to the target
distribution. The assumptions of covariate and label shift
can be framed as criteria on the causal structure of the data,
shown in Figure 1(a)-(b) (Schölkopf et al., 2012).

However, these assumptions are often overly restrictive for
real-world settings, as the shifts encountered are typically
more complex (i.e., ‘compound’ shifts) (Schrouff et al.,
2022). Consider the Hospital example where our goal is to
learn a mapping from patient electronic health record (EHR)
data X to disease risk Y . In order to adapt a predictor in
source P to target Q we need to take into account that often
p(Y | X) 6= q(Y | X) and p(X | Y ) 6= q(X | Y ). For
example, social determinants of health (SDH) (Marmot &
Wilkinson, 2005) (e.g., income, education, discrimination,
and other societal factors) affects both how one is diagnosed,
changing p(Y | X), and how often one can visit the hospital
for treatment, changing p(X | Y ).

In this work, we introduce a distribution shift assumption
that generalizes both covariate and label shift, allowing for
shifts in the marginal distributions of both X and Y . Specif-
ically, the shift from P to Q is located in a latent variable U ,
which we call latent shift: p(U) 6= q(U). This latent U in-
fluences, or confounds, all observed variables, and so shifts
all observable distributions from P to Q (e.g., in the Hospi-
tal example, U could be income level). However, without
access to additional observed data, identifying the optimal
q(Y |X) is impossible (for more details see Section 3). In
order to make progress, we will leverage additional data
in the source domain, a strategy inspired by recent work
(Arjovsky et al., 2019; Koh et al., 2020).

Our key insight is that we can frame learning the opti-
mal q(Y |X) as a non-parametric identification problem.
This suggests a strategy: we can use techniques from
causal inference literature that were built to identify the
interventional distribution p(Y |do(X)), to instead identify



Adapting to Shifts in Latent Confounders using Observed Concepts and Proxies

<latexit sha1_base64="yjMeekLgUZIgxxZUnZIEydHLGjw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs1Ov1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7olJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jUZcIXMiIkllClubyVsRBVlxmZTsiF4yy+vkvZF1bus1pq1Sv0uj6MIJ3AK5+DBFdThFhrQAgYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP7upjO8=</latexit>

X
<latexit sha1_base64="XCfcHuINa/Us2O+mFfQOfFV7ZHg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiAfMhyRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0c3Mbz2h0jyW92acoB/RgeQhZ9RYqf7QK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZe+yXKlXStW7LI48nMApnIMHV1CFW6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gC9LYzw</latexit>

Y

feature label

<latexit sha1_base64="yjMeekLgUZIgxxZUnZIEydHLGjw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs1Ov1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7olJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jUZcIXMiIkllClubyVsRBVlxmZTsiF4yy+vkvZF1bus1pq1Sv0uj6MIJ3AK5+DBFdThFhrQAgYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP7upjO8=</latexit>

X
<latexit sha1_base64="XCfcHuINa/Us2O+mFfQOfFV7ZHg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiAfMhyRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0c3Mbz2h0jyW92acoB/RgeQhZ9RYqf7QK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZe+yXKlXStW7LI48nMApnIMHV1CFW6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gC9LYzw</latexit>

Y

feature label

(a) covariate shift (b) label shift

<latexit sha1_base64="XCfcHuINa/Us2O+mFfQOfFV7ZHg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiAfMhyRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0c3Mbz2h0jyW92acoB/RgeQhZ9RYqf7QK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZe+yXKlXStW7LI48nMApnIMHV1CFW6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gC9LYzw</latexit>

Y

<latexit sha1_base64="xIAb2ZQ7bxbDDsNXAM4NczbKs0E=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiAS8GkiPsbeaSNXt7x+6eEEJ+gY2FIrb+JDv/jZvkCk18MPB4b4aZeWEquDau++0U1tY3NreK26Wd3b39g/LhUUsnmWLos0Qkqh1SjYJL9A03AtupQhqHAh/C0c3Mf3hCpXki7804xSCmA8kjzqixUtPvlStu1Z2DrBIvJxXI0eiVv7r9hGUxSsME1brjuakJJlQZzgROS91MY0rZiA6wY6mkMepgMj90Ss6s0idRomxJQ+bq74kJjbUex6HtjKkZ6mVvJv7ndTITXQcTLtPMoGSLRVEmiEnI7GvS5wqZEWNLKFPc3krYkCrKjM2mZEPwll9eJa2LqndZrTVrlfpdHkcRTuAUzsGDK6jDLTTABwYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP7cdjOw=</latexit>

U

feature

concept label

(unobserved) proxy

<latexit sha1_base64="f2P+TwXG5bQDiAHUFP76Awd8P60=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGUgjYVFAuYDkiPsbeaSNXt7x+6eEEJ+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++3kNja3tnfyu4W9/YPDo+LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49rcbz+h0jyWD2aSoB/RoeQhZ9RYqVHrF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMT3vpTLpPUoGTLRWEqiInJ/Gsy4AqZERNLKFPc3krYiCrKjM2mYEPwVl9eJ62rsnddrjQqpep9FkcezuAcLsGDG6jCHdShCQwQnuEV3pxH58V5dz6WrTknmzmFP3A+fwCb1Yza</latexit>

C

(c) latent shift (causal)

<latexit sha1_base64="yjMeekLgUZIgxxZUnZIEydHLGjw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs1Ov1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7olJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jUZcIXMiIkllClubyVsRBVlxmZTsiF4yy+vkvZF1bus1pq1Sv0uj6MIJ3AK5+DBFdThFhrQAgYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP7upjO8=</latexit>

X
<latexit sha1_base64="xIAb2ZQ7bxbDDsNXAM4NczbKs0E=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiAS8GkiPsbeaSNXt7x+6eEEJ+gY2FIrb+JDv/jZvkCk18MPB4b4aZeWEquDau++0U1tY3NreK26Wd3b39g/LhUUsnmWLos0Qkqh1SjYJL9A03AtupQhqHAh/C0c3Mf3hCpXki7804xSCmA8kjzqixUtPvlStu1Z2DrBIvJxXI0eiVv7r9hGUxSsME1brjuakJJlQZzgROS91MY0rZiA6wY6mkMepgMj90Ss6s0idRomxJQ+bq74kJjbUex6HtjKkZ6mVvJv7ndTITXQcTLtPMoGSLRVEmiEnI7GvS5wqZEWNLKFPc3krYkCrKjM2mZEPwll9eJa2LqndZrTVrlfpdHkcRTuAUzsGDK6jDLTTABwYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP7cdjOw=</latexit>

U

label

concept feature

(unobserved) proxy

<latexit sha1_base64="f2P+TwXG5bQDiAHUFP76Awd8P60=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGUgjYVFAuYDkiPsbeaSNXt7x+6eEEJ+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++3kNja3tnfyu4W9/YPDo+LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49rcbz+h0jyWD2aSoB/RoeQhZ9RYqVHrF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMT3vpTLpPUoGTLRWEqiInJ/Gsy4AqZERNLKFPc3krYiCrKjM2mYEPwVl9eJ62rsnddrjQqpep9FkcezuAcLsGDG6jCHdShCQwQnuEV3pxH58V5dz6WrTknmzmFP3A+fwCb1Yza</latexit>

C

(c) latent shift (anti-causal)

<latexit sha1_base64="yjMeekLgUZIgxxZUnZIEydHLGjw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs1Ov1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7olJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jUZcIXMiIkllClubyVsRBVlxmZTsiF4yy+vkvZF1bus1pq1Sv0uj6MIJ3AK5+DBFdThFhrQAgYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP7upjO8=</latexit>

X

<latexit sha1_base64="XCfcHuINa/Us2O+mFfQOfFV7ZHg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiAfMhyRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0c3Mbz2h0jyW92acoB/RgeQhZ9RYqf7QK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZe+yXKlXStW7LI48nMApnIMHV1CFW6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gC9LYzw</latexit>

Y
<latexit sha1_base64="Rsny168I3NCMIUfebf6X4RNadaE=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJgY2GRgPmA5Ah7m7lkzd7esbsnhCO/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWD2aSoB/RoeQhZ9RYqdHulytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0rqoelfVy8ZlpXafx1GEEziFc/DgGmpwB3VoAgOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH7oljO4=</latexit>

W
<latexit sha1_base64="Rsny168I3NCMIUfebf6X4RNadaE=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJgY2GRgPmA5Ah7m7lkzd7esbsnhCO/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWD2aSoB/RoeQhZ9RYqdHulytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzQ+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjMviYDrpAZMbGEMsXtrYSNqKLM2GxKNgRv+eVV0rqoelfVy8ZlpXafx1GEEziFc/DgGmpwB3VoAgOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH7oljO4=</latexit>

W

Figure 1. Different domain adaptation assumptions: (a) covariate shift p(X) 6= q(X), (b) label shift p(Y ) 6= q(Y ), (c)-(d) latent shift
p(U) 6= q(U).

q(Y |X). This is non-trivial, as identifying q(Y |X) is harder
than p(Y |do(X)).1 Our identification strategy is construc-
tive, and immediately suggests an algorithm for estimating
q(Y |X) when data is discrete. We describe why additional
data is sufficient for identification, we validate our approach
numerically, and we detail useful future directions.

2. Method
Let X ∈ [kX ] be discrete features (i.e., with kX possible
categories) and Y ∈ [kY ] be discrete labels. Let P be the
source distribution and Q be the target, with probability
mass functions p, q. Let p(X = i), q(X = i) be shorthand
for PP (X = i),PQ(X = i), where P denotes probability.

Consider the following learning setup: we observe training
data (x1, y1), . . . , (xn, yn) from the source distribution P .
We also observe samples (x′1), . . . , (x′m) drawn from the
target distributionQ. In this domain adaptation scenario, our
goal is to find the optimal predictor for y′ drawn fromQ, i.e.,
q(Y |X). However, without assumptions, this is impossible.
We propose the following conditions to generalize covariate
and label shift.

A1. Alongside X,Y we also observe C ∈ [kC ] and W ∈
[kW ]. All data is generated by the process described in
either Figure 1(c) or (d). U ∈ [kU ] is an unobserved latent
variable. Finally all data is faithful and Markov (Spirtes
et al., 2000) (i.e., conditional independences in the data
exist iff they exist in the graph).

Formally, the directed acyclic graphs (DAGs) described in
Figure 1 and Assumption A1 are probabilistic graphical
models (Pearl, 1988) that describe the data generation pro-
cess. Specifically, each node V is a random variable, and
each edge describes a (unknown) function fV mapping par-
ent nodes pa(V ) to child nodes V , i.e., V = fV (pa(V )).
These models encode conditional independencies that can
be derived via d-separation (Pearl et al., 2000).

1Identifying p(Y |do(X)) only requires identifying a specific
target distribution where q(U |X) = p(U) (the one that does not
confound X,Y ).

These graphs are inspired by two lines of work. The first
is on learning with concepts (Kumar et al., 2009; Lampert
et al., 2009; Koh et al., 2020). Concepts C are high-level,
often interpretable, pieces of information that mediate the
relationship between X and Y . In many settings, such as
healthcare, concepts are readily available (Koh et al., 2020).
Continuing our earlier example where X is raw EHR data
(e.g., temperature, blood cultures, ...) and Y is disease
risk, C could be physician summaries such as the presence
and spread of infection. The second is on causal effect
estimation with proxy variables (Kuroki & Pearl, 2014;
Miao et al., 2018): W is a proxy of U that allows one to
identify the causal effect ofC on Y (i.e., in the causal setting
in Figure 1(c)). In our running example, a useful W is the
region where a patient lives, a proxy for income level U .
We describe why W and C are needed in Section 3.
A2. The shift between P and Q is located in U , i.e., there
is latent shift p(U) 6= q(U).

This assumption describes how the difference between P
andQ arises: distributions on U or that have U marginalized
(i.e., all observed distributions) will shift between P and
Q. Whereas, distributions conditional on U do not shift. In
particular this setting violates the covariate and label shift
invariances: p(Y |X)=q(Y |X) and p(X|Y )=q(X|Y ).
A3. We have that kX , kW ≥ kU .

The above is necessary because we need to place some
restriction on the ability of U to influence W,X,C, Y . This
is more generic than placing a functional restriction on U ,
all we require is that the support of U is smaller than that of
the observed variables.
A4. For estimation we require that: (i) for every i ∈ U
where q(i) > 0 we have that p(i) > 0, and (ii) all matrices
are assumed to be full rank.

The above is required for our identification procedure. The
first condition ensures that q(U = i)/p(U = i) is well-
defined. Overall these assumptions are of two types: (1)
Structural: Assumptions 1, 2 describe how the data and
shifts are structured; (2) Functional: Assumptions 3, 4
detail conditions on the functions that generate data.
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Our goal is to estimate the target distribution q(Y |X) given
only (w1, x1, c1, y1), . . . (wn, xn, cn, yn) from the source
distribution P and x′1, . . . x

′
m from the target. Given A1,

Figure 1 (c) implies the following decomposition:

q(Y |X)
(1)
=

kU∑
i=1

q(Y |X,U = i)q(U = i|X) (1)

(2)
=

kU∑
i=1

p(Y |X,U = i)
q(X|U = i)q(U = i)

q(X)

(3)
=

kU∑
i=1

p(Y |X,U = i)
p(U = i|X)p(X)q(U = i)

p(U = i)q(X)

(4)∝
kU∑
i=1

p(Y |X,U = i)p(U = i|X)
q(U = i)

p(U = i)

The first equality (1) is given by the chain rule and marginal-
ization. The second (2) is given by A2: since q(Y |X,U =
i) conditions on U we have q(Y |X,U = i) = p(Y |X,U =
i). The fractional term is given by Bayes rule. The equality
(3) is again given by A2 and Bayes rule: q(X|U = i) =
p(X|U = i) = p(U = i|X)p(X)/p(U = i). The propor-
tional (4) is given by the fact that p(X)/q(X) is constant
as we are conditioning on these variables on the left-hand
side. Therefore, if we can estimate the quantities on the
right-hand side, we can estimate q(Y |X) by summing these
quantities across U and normalizing. This is non-trivial as
we do not observe U . Our main result is the following.

Theorem 1. Given that the above assumptions hold, all
probability mass functions over W,X,C, Y, Ũ in the source
P are identifiable, where Ũ is an unknown sorting of U .

We give a full proof in the Appendix and give a sketch here.
The first key observation is that identifying distributions
on Ũ is all that is needed, as (a) it satisfies the same inde-
pendence conditions as U , and (b) our quantity of interest
q(Y |X) only requires marginalizing over U , making the
order of the categories of U irrelevant to identification. The
proof works in two stages: 1. It first demonstrates that
p(W |Ũ) can be identified, and 2. Shows that once p(W |Ũ)
is identified, all distributions on W,X,C, Y, Ũ are identi-
fied. Stage 1 is done by proving a variation of a result given
by Kuroki & Pearl (2014). They demonstrate that when
kW = kX = kU and data is generated from the graph
of Figure 1(c) then it is possible to identify the causal ef-
fect p(Y |do(C)) (in Theorem 1 (Kuroki & Pearl, 2014)).
Identifying p(Y |do(C)) only requires identifying specific
distributions involving Ũ , in order to remove its contribu-
tion to Y , i.e., p(Y |do(C)) =

∑
x,u P (Y |C,X = x, Ũ =

u)P (X = x, Ũ = u). However, we show by construction,
that the result of Kuroki & Pearl (2014) is stronger. First,
it recovers p(W |Ũ) for Figure 1(c) or Figure 1(d). Second,
it allows for identification of all distributions involving Ũ .

Algorithm 1 Estimating q(Y |X).
Require: source P={(wi, xi, ci, yi)}ni=1; target Q={xj}mj=1;

For any variables G∈ [kG], H∈ [kH ] let p(G|H) be a kG ×
kH matrix of probabilities s.t. p(G|H)ij = p(G= i|H=j)

1: Using P , form matrices A,B described in eq. (2)
2: Eigendecompose A−1B=S−1∆S to get p(W |Ũ) from S−1

3: Estimate p(Ũ|X) = p(W|Ũ)−1p(W|X)

4: Estimate q(Ũ)/p(Ũ) = p(Ũ|X)−1[q(X)/p(X)]

5: Estimate p(Y|X, Ũ) = p(Y|X,W)
(

p(W|Ũ)◦p(Ũ|X)
p(W|X)

)−1

6: Estimate q(Y |X) for any xj ∈ Q via eq. (1)

The key observation behind this second result (i.e., Stage 2)
is that conditioning on Ũ d-separates W from the rest of the
observed variables. This means that factorizing observed
distributions using Ũ ,W can form linear systems. In these
systems, the unknown distributions involving Ũ can be re-
covered by some function of p(W |Ũ) (identified in Stage
1) and observable distributions. Because this result does not
rely on the ordering of {X,C, Y } in the graph, it applies
to both Figures 1(c) and 1(d) (more details in Appendix).
Finally, as both stages of the proof are constructive, we can
immediately use them to design an approach to estimate
q(Y |X). This is shown in Algorithm 1.

3. Uniqueness
Do we really need C,W ? And why can’t we have addi-
tional edges such as X → Y in Figure 1(c)? We describe
here at a high level why generalizing the graph by removing
observed nodes or adding edges prevents non-parametric
identification of a simpler quantity p(Y |do(C)) (all results
will apply to Figure 1(d) by swapping X and Y ). While
these are not necessary conditions, they are nearly as gen-
eral as those used in non-parametric identification results
in causal inference literature (Miao et al. (2018); Lee &
Bareinboim (2021) allow for an additional edge W → Y ).

Can C and/or W be removed? Removing C corre-
sponds to the setting of Pearl (2010), where the goal is
to estimate p(Y |do(X)). This work assumes one can: (a)
observe U without error in a subpopulation (Selén, 1986;
Greenland & Lash, 2008), (b) observe p(W |U) (Pearl,
2010), or (c) place a prior distribution on the parameters of
p(W |U) to bound p(Y |do(X)) (Greenland, 2005). How-
ever, these techniques are hard to apply when U is complex,
e.g., if U is a collection of social determinants of health
(Marmot & Wilkinson, 2005). Here we will not assume
it is possible to observe U, p(W |U) or derive a prior for
p(W |U). Removing W leads to a generalization of the
front-door graph (Pearl et al., 2000) for which causal effects
are not non-parametrically identifiable. Removing both C
and W , one can only identify p(Y |do(X)) if U is observed,
an assumption called ‘ignorability’ (Imbens & Rubin, 2015).
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W

Figure 2. Removing C,W or adding any of the dotted edges pre-
vents non-parametric identification of p(W |Ũ) via our approach.

Can we add any additional edges? Identifying p(W |U)
(i.e., Stage 1 in the proof of Theorem 1) requires that both
W ⊥⊥ {X,C, Y } | U and Y ⊥⊥ {W,X} | {U,C}. The first
conditional independence means that we cannot have any
arrows from X,C, Y to or from W . We do not prove here
that this is necessary, but we suspect that it is: currently the
only edge that can be added for identifying p(Y |do(C)) is
W → Y Miao et al. (2018); Lee & Bareinboim (2021), and
these methods do not identify p(W |U). The only other edge
that could be added to the graph and it still be a DAG isX →
Y . However, this would violate the second conditional
independence statement as it would make Y 6⊥⊥ X | {U,C}.
This edge would also render the causal effect unidentifiable
under the most generic non-parametric methods (Lee &
Bareinboim, 2021).

4. Experimental Verification
We now describe a simple simulation to verify the iden-
tification results in the previous section. We simulate
data following Figure 1(c)2 where every variable is cate-
gorical and all child variables are log-linear functions of
their parents (more details in the Appendix). We sample
n ∈ {5e2, 1e3, 2e3, 5e3, 1e4, 2e4, 5e4, 1e5, 2e5, 5e5, 1e6}
inputs from each of P and Q, and compare the root mean
squared error (RMSE) between a sample estimate of q(Y |X)
and (i) an estimate of p(Y |X), (ii) our adaptation approach,
i.e., eq. (1), (iii) an independent sample estimate of q(Y |X).
Here (iii) is the error due to sampling, a lower bound for
estimation. We average all results over 5 random trials.

The results are shown in Figure 3. Even for small n, the
error of p(Y |X) is, at best, nearly 3× higher than approach.
The error increase for our method is due to not having
enough data to estimate distributions involving Ũ well. As
n increases and we estimate the quantities in eq. (1) more
accurately, our approach matches the error due to sampling,
the estimation lower bound.

2Obtaining results for Figure 1(d) is trivial as the only change
involves swapping X and Y when estimating p(W |Ũ).

sampling error
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Figure 3. Simulation results for data from the graph of Figure 1(c).

5. Discussion
We presented a result for unsupervised domain adaptation
when covariate or label shift assumptions are too restrictive.
To do so, we observed that classic results in non-parametric
identification of causal effects could be generalized to iden-
tify q(Y |X). Because our analysis is constructive, it imme-
diately yields an approach for estimating q(Y |X).

We believe there are multiple interesting directions to fur-
ther investigate. The biggest shortcoming of this approach is
its limitation to discrete data. We believe the identification
result extends to the setting where W,X,C, Y are allowed
to be continuous. This is because: (i) The only marginal-
ization one needs to perform to set up the matrix equations
for identification is over U . So if U is kept discrete, this
marginalization is kept finite. (ii) The only conditions on
matrices is that they are full rank. This means that all of
the proof steps should go through if we replace mass func-
tions with densities. Extending this result further to the case
where U is continuous seems possible: it likely requires
conditions on U similar to those of Miao et al. (2018).

Even if continuous identification is possible, the estimation
approach described in Algorithm 1 is non-trivial to extend to
continuous data. Specifically, it requires density estimation
of p(X), q(X). This is hard as X is a high-dimensional
object in many cases (e.g., EHR, image, text data). A more
statistically efficient approach would be to learn a latent vari-
able model, a technique used by Louizos et al. (2017). The
difficulty here is to guarantee identification: i.e., Louizos
et al. (2017) have no guarantees.

It is also worth deriving estimation guarantees (i.e., consis-
tency guarantees, error bounds) for estimators of q(Y |X).
This would help understand if further data in Q could im-
prove estimation. For example, if we also observed C in Q
would this more tightly bound the error of q(Y |X)?
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Appendix
Recall Theorem 1:

Theorem 1. Given that the above assumptions hold, all distributions over W,X,C, Y, Ũ are identifiable, where Ũ is an
unknown sorting of U .

Before we prove this we will prove a variant of Theorem 1 of Kuroki & Pearl (2014).

Theorem 2 (variant of Theorem 1 of Kuroki & Pearl (2014)). Given assumptions A1-A4, p(W |Ũ) is identifiable.

Proof. First consider that we can factorize the joint of W,X, Y conditional on C as:

p(Y,X,W | C) =

kU∑
k=1

p(Y | C,U = k)p(X | C,U = k)p(W | U = k)p(U = k | C).

Next, construct the following matrices based on the decomposition of p(Y,X,W |C) and of its marginal distributions:

A :=


1 p(W = 1|C) · · · p(W = kW − 1|C)

p(X = 1|C) p(X = 1,W = 1|C) · · · p(X = 1,W = kW − 1|C)
...

...
. . .

...
p(X = kX − 1|C) p(X = kX − 1,W = 1|C), · · · p(X = kX − 1,W = kW − 1|C)



B :=


p(Y |C) p(Y,W = 1|C) · · · p(Y,W = kW − 1|C)

p(Y,X = 1|C) p(Y,X = 1,W = 1|C) · · · p(Y,X = 1,W = kW − 1|C)
...

...
. . .

...
p(Y,X = kX − 1|C) p(Y,X = kX − 1,W = 1|C) · · · p(Y,X = kX − 1,W = kW − 1|C)


R :=

1 p(X = 1|C,U = 1) · · · p(X = kX − 1|C,U = 1)
...

...
. . .

...
1 p(X = 1|C,U = kU ) · · · p(X = kX − 1|C,U = kU )


M :=

p(U = 1|C) 0 · · · 0
. . .

0 · · · 0 p(U = kU |C)

∆ =

p(Y |C,U = 1) 0 · · · 0
. . .

0 · · · 0 p(Y |C,U = kU )


S :=

1 p(W = 1|U = 1) · · · p(W = kW − 1|U = 1)
...

...
. . .

...
1 p(W = 1|U = kU ) · · · p(W = kW − 1|U = kU )


Then note that

A = R>MS B = R>M∆S. (2)

We then have that,

A†B =
[(
A>A

)−1
A>
]
R>M∆S

=
(
S>MRR>MS

)−1
S>MR

(
R>M∆S

)
=
(a)

(S)−1∆S,

where A† is the Moore-Penrose psuedoinverse of A (recall all psuedoinverses are unique and exist). In (a) we assume S is
square and full rank. Further, R has rank kU so that RR> is invertible. In the event that kW > kU , the invertibility of S
will require coarsening W to ensure equality of the coarsened k′W and kU .



Adapting to Shifts in Latent Confounders using Observed Concepts and Proxies

Because we have to marginalize U in order to obtain observed distributions, it is only possible to identify U up to an arbitrary
permutation. Specifically, let Ũ be a sorting of U such that p(Y |C, Ũ = 1) > p(Y |C, Ũ = 2) > · · · p(Y |C, Ũ = kU ).

We may then identify p(W |Ũ) from the eigendecomposition of A†B, directly employing the argument of Kuroki & Pearl
(2014, Appendix) to recover p(W |Ũ) from the eigenvectors of A†B.

Now that we have obtained p(W |Ũ), we can prove Theorem 1.

Proof. As distributions that only involve {W,X,C, Y, } are observable, all we need to prove is that we can identify all
distributions involving Ũ . Let V ⊆ {W,X,C, Y } and V ′ ⊆ {W,X,C, Y } \ V . All we need to identify are (a) p(Ũ), (b)
p(V|Ũ), (c) p(Ũ |V), (d) p(V|Ũ ,V ′). Note that this is sufficient because (e) p(Ũ ,V|V ′) = p(V|Ũ ,V ′)p(Ũ |V ′) (given by (d)
and (c)).

For (a) note that p(Ũ) = p(W|Ũ)†p(W).

For (b) recall we have already identified p(W|Ũ). So let V\W = V \ W . Then we have that p(V\W |W) =

p(V\W |Ũ)p(Ũ|W) ⇒ p(V\W |Ũ) = p(V\W |W)p(Ũ|W)† (as V\W ⊥⊥ W | Ũ ). Note that this is identi-
fied because the first term on the right-hand side is observed and the second term can be identified via Bayes rule
p(Ũ |W ) = p(W |Ũ)p(Ũ)/p(W ). Finally note that p(V\W ,W|Ũ) = p(V\W |Ũ) (again due to V\W ⊥⊥ W | Ũ ), which
we have just identified.

For (c) we identified p(Ũ|W) above by Bayes rule. We then have that p(W|V\W ) = p(W|Ũ)p(Ũ|V\W ) ⇒
p(Ũ|V\W ) = p(W|Ũ)†p(W|V\W ), which is identifiable. Finally we have via Bayes rule p(Ũ |V\W ,W ) =

p(V\W ,W |Ũ)p(Ũ)/p(V\W ,W ) all of which we can identify (via (a) and (b)).

For (d) p(V\W |V ′\W ,W) = p(V\W |Ũ,V ′\W )p(Ũ|V ′\W ,W)⇒ p(V\W |Ũ,V ′\W ) = p(V\W |V ′\W ,W)p(Ũ|V ′\W ,W)†.

The first term on the right-hand side is observed and the second is identified via (c). Finally note that p(V\W ,W |Ũ ,V ′\W ) =

p(W |V\W , Ũ ,V ′\W )p(V\W |Ũ ,V ′\W ) = p(W |Ũ)p(V\W |Ũ ,V ′\W ) (as W ⊥⊥ V\W |Ũ ), where all right-hand terms are

identified. Also that p(V\W , |W, Ũ,V ′\W ) = p(V\W , |Ũ ,V ′\W ) which is identified.

Simulation Details

We let kU = 3, kX = 4, kC = 3, kY = 2, kW = 3. Let σ(z) : Rd → ∆d−1 be the softmax function applied to a vector z,
where ∆d−1 is the (d−1)-dimensional simplex. Let o(v) be the |V |-dimensional one-hot representation of a sample from
a categorical variable v ∈ V . The following equations describe how each variable is sampled in the simulation results of
Section 4.

p(U) = σ([1, 0.1, 0.1])

q(U) = σ([0.1, 0.1, 1])

p(W | U = u) = σ(MW |Uo(u))

p(X | U = u) = σ(MX|Uo(u))

p(C | X = x, U = u) = σ(MC|Xo(x) + MC|Uo(u))

p(Y | C = c, U = u) = σ(MY |Co(c) + MY |Uo(u))

where the matrices are defined as:

MW |U :=

 5 0.5 0.5
0.5 0.5 0.5
0.5 0.5 5

MX|U :=


5 5 0.5
5 0.5 5

0.5 5 5
5 0.5 5

MC|X :=

 5 5 0.5 0.5
5 0.5 5 5

0.5 5 5 0.5

MC|U :=

 5 5 0.5
5 0.5 5

0.5 5 5


MY |C = MY |U :=

[
5 5 0.5

0.5 5 5

]
.

These were chosen to ensure that the shift from p(U) to q(U) caused changes in the distributions of observed variables.


