
From Word Embeddings To Document Distances

Matt J. Kusner MKUSNER@WUSTL.EDU
Yu Sun YUSUN@WUSTL.EDU
Nicholas I. Kolkin N.KOLKIN@WUSTL.EDU
Kilian Q. Weinberger KILIAN@WUSTL.EDU

Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130

Abstract

We present the Word Mover’s Distance (WMD),
a novel distance function between text docu-
ments. Our work is based on recent results in
word embeddings that learn semantically mean-
ingful representations for words from local co-
occurrences in sentences. The WMD distance
measures the dissimilarity between two text doc-
uments as the minimum amount of distance that
the embedded words of one document need to
“travel” to reach the embedded words of another
document. We show that this distance metric can
be cast as an instance of the Earth Mover’s Dis-
tance, a well studied transportation problem for
which several highly efficient solvers have been
developed. Our metric has no hyperparameters
and is straight-forward to implement. Further, we
demonstrate on eight real world document classi-
fication data sets, in comparison with seven state-
of-the-art baselines, that the WMD metric leads
to unprecedented low k-nearest neighbor docu-
ment classification error rates.

1. Introduction
Accurately representing the distance between two docu-
ments has far-reaching applications in document retrieval
(Salton & Buckley, 1988), news categorization and cluster-
ing (Ontrup & Ritter, 2001; Greene & Cunningham, 2006),
song identification (Brochu & Freitas, 2002), and multi-
lingual document matching (Quadrianto et al., 2009).

The two most common ways documents are represented
is via a bag of words (BOW) or by their term frequency-
inverse document frequency (TF-IDF). However, these fea-
tures are often not suitable for document distances due to

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

‘Obama’

word2vec embedding

‘President’ ‘speaks’

‘Illinois’

‘media’

‘greets’

‘press’

‘Chicago’

document 2document 1
Obama
speaks

to
the
media

in
Illinois

The
President
greets

the
press

in
Chicago

Figure 1. An illustration of the word mover’s distance. All
non-stop words (bold) of both documents are embedded into a
word2vec space. The distance between the two documents is the
minimum cumulative distance that all words in document 1 need
to travel to exactly match document 2. (Best viewed in color.)

their frequent near-orthogonality (Schölkopf et al., 2002;
Greene & Cunningham, 2006). Another significant draw-
back of these representations are that they do not capture
the distance between individual words. Take for example
the two sentences in different documents: Obama speaks
to the media in Illinois and: The President greets the press
in Chicago. While these sentences have no words in com-
mon, they convey nearly the same information, a fact that
cannot be represented by the BOW model. In this case, the
closeness of the word pairs: (Obama, President); (speaks,
greets); (media, press); and (Illinois, Chicago) is not fac-
tored into the BOW-based distance.

There have been numerous methods that attempt to circum-
vent this problem by learning a latent low-dimensional rep-
resentation of documents. Latent Semantic Indexing (LSI)
(Deerwester et al., 1990) eigendecomposes the BOW fea-
ture space, and Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) probabilistically groups similar words into top-
ics and represents documents as distribution over these top-
ics. At the same time, there are many competing vari-
ants of BOW/TF-IDF (Salton & Buckley, 1988; Robert-
son & Walker, 1994). While these approaches produce a
more coherent document representation than BOW, they
often do not improve the empirical performance of BOW
on distance-based tasks (e.g., nearest-neighbor classifiers)
(Petterson et al., 2010; Mikolov et al., 2013c).

From Word Embeddings To Document Distances

In this paper we introduce a new metric for the distance be-
tween text documents. Our approach leverages recent re-
sults by Mikolov et al. (2013b) whose celebrated word2vec
model generates word embeddings of unprecedented qual-
ity and scales naturally to very large data sets (e.g., we use
a freely-available model trained on approximately 100 bil-
lion words). The authors demonstrate that semantic rela-
tionships are often preserved in vector operations on word
vectors, e.g., vec(Berlin) - vec(Germany) + vec(France)
is close to vec(Paris). This suggests that distances and
between embedded word vectors are to some degree se-
mantically meaningful. Our metric, which we call the
Word Mover’s Distance (WMD), utilizes this property of
word2vec embeddings. We represent text documents as a
weighted point cloud of embedded words. The distance be-
tween two text documents A and B is the minimum cumu-
lative distance that words from document A need to travel
to match exactly the point cloud of document B. Figure 1
shows a schematic illustration of our new metric.

The optimization problem underlying WMD reduces to
a special case of the well-studied Earth Mover’s Dis-
tance (Rubner et al., 1998) transportation problem and
we can leverage existing literature on fast specialized
solvers (Pele & Werman, 2009). We also compare several
lower bounds and show that these can be used as approxi-
mations or to prune away documents that are provably not
amongst the k-nearest neighbors of a query.

The WMD distance has several intriguing properties: 1.
it is hyper-parameter free and straight-forward to under-
stand and use; 2. it is highly interpretable as the dis-
tance between two documents can be broken down and
explained as the sparse distances between few individual
words; 3. it naturally incorporates the knowledge encoded
in the word2vec space and leads to high retrieval accu-
racy—it outperforms all 7 state-of-the-art alternative doc-
ument distances in 6 of 8 real world classification tasks.

2. Related Work
Constructing a distance between documents is closely tied
with learning new document representations. One of the
first works to systematically study different combinations
of term frequency-based weightings, normalization terms,
and corpus-based statistics is Salton & Buckley (1988).
Another variation is the Okapi BM25 function (Robertson
& Walker, 1994) which describes a score for each (word,
document) pair and is designed for ranking applications.
Aslam & Frost (2003) derive an information-theoretic sim-
ilarity score between two documents, based on probability
of word occurrence in a document corpus. Croft & Lafferty
(2003) use a language model to describe the probability of
generating a word from a document, similar to LDA (Blei
et al., 2003). Most similar to our method is that of Wan

(2007) which first decomposes each document into a set of
subtopic units via TextTiling (Hearst, 1994), and then mea-
sures the effort required to transform a subtopic set into
another via the EMD (Monge, 1781; Rubner et al., 1998).

New approaches for learning document representations
include Stacked Denoising Autoencoders (SDA) (Glorot
et al., 2011), and the faster mSDA (Chen et al., 2012),
which learn word correlations via dropout noise in stacked
neural networks. Recently, the Componential Counting
Grid (Perina et al., 2013) merges LDA (Blei et al., 2003)
and Counting Grid (Jojic & Perina, 2011) models, allow-
ing ‘topics’ to be mixtures of word distributions. As well,
Le & Mikolov (2014) learn a dense representation for doc-
uments using a simplified neural language model, inspired
by the word2vec model (Mikolov et al., 2013a).

The use of the EMD has been pioneered in the computer vi-
sion literature (Rubner et al., 1998; Ren et al., 2011). Sev-
eral publications investigate approximations of the EMD
for image retrieval applications (Grauman & Darrell, 2004;
Shirdhonkar & Jacobs, 2008; Levina & Bickel, 2001). As
word embeddings improve in quality, document retrieval
enters an analogous setup, where each word is associated
with a highly informative feature vector. To our knowledge,
our work is the first to make the connection between high
quality word embeddings and EMD retrieval algorithms.

Cuturi (2013) introduces an entropy penalty to the EMD
objective, which allows the resulting approximation to be
solved with very efficient iterative matrix updates. Further,
the vectorization enables parallel computation via GPGPUs
However, their approach assumes that the number of di-
mensions per document is not too high, which in our set-
ting is extremely large (all possible words). This removes
the main benefit (parallelization on GPGPUs) of their ap-
proach and so we develop a new EMD approximation that
appears to be very effective for our problem domain.

3. Word2Vec Embedding
Recently Mikolov et al. (2013a;b) introduced word2vec, a
novel word-embedding procedure. Their model learns a
vector representation for each word using a (shallow) neu-
ral network language model. Specifically, they propose a
neural network architecture (the skip-gram model) that con-
sists of an input layer, a projection layer, and an output
layer to predict nearby words. Each word vector is trained
to maximize the log probability of neighboring words in a
corpus, i.e., given a sequence of words w1, . . . , wT ,

1
T

T∑
t=1

∑
j∈nb(t)

log p(wj |wt)

where nb(t) is the set of neighboring words of word wt and
p(wj |wt) is the hierarchical softmax of the associated word

From Word Embeddings To Document Distances

vectors vwj
and vwt

(see Mikolov et al. (2013a) for more
details). Due to its surprisingly simple architecture and the
use of the hierarchical softmax, the skip-gram model can
be trained on a single machine on billions of words per
hour using a conventional desktop computer. The ability
to train on very large data sets allows the model to learn
complex word relationships such as vec(Japan) - vec(sushi)
+ vec(Germany) ≈ vec(bratwurst) and vec(Einstein) -
vec(scientist) + vec(Picasso) ≈ vec(painter) (Mikolov
et al., 2013a;b). Learning the word embedding is entirely
unsupervised and it can be computed on the text corpus of
interest or be pre-computed in advance. Although we use
word2vec as our preferred embedding throughout, other
embeddings are also plausible (Collobert & Weston, 2008;
Mnih & Hinton, 2009; Turian et al., 2010).

4. Word Mover’s Distance
Assume we are provided with a word2vec embedding ma-
trix X∈Rd×n for a finite size vocabulary of n words. The
ith column, xi ∈Rd, represents the embedding of the ith

word in d-dimensional space. We assume text documents
are represented as normalized bag-of-words (nBOW) vec-
tors, d ∈Rn. To be precise, if word i appears ci times in
the document, we denote di = ciPn

j=1 cj
. An nBOW vector

d is naturally very sparse as most words will not appear in
any given document. (We remove stop words, which are
generally category independent.)

nBOW representation. We can think of the vector d as
a point on the n−1 dimensional simplex of word distribu-
tions. Two documents with different unique words will lie
in different regions of this simplex. However, these doc-
uments may still be semantically close. Recall the earlier
example of two similar, but word-different sentences in one
document: “Obama speaks to the media in Illinois” and in
another: “The President greets the press in Chicago”. After
stop-word removal, the two corresponding nBOW vectors
d and d′ have no common non-zero dimensions and there-
fore have close to maximum simplex distance, although
their true distance is small.

Word travel cost. Our goal is to incorporate the seman-
tic similarity between individual word pairs (e.g. Presi-
dent and Obama) into the document distance metric. One
such measure of word dissimilarity is naturally provided by
their Euclidean distance in the word2vec embedding space.
More precisely, the distance between word i and word j be-
comes c(i, j) = ‖xi − xj‖2. To avoid confusion between
word and document distances, we will refer to c(i, j) as the
cost associated with “traveling” from one word to another.

Document distance. The “travel cost” between two words
is a natural building block to create a distance between two
documents. Let d and d′ be the nBOW representation of

The President greets the press in Chicago.

Obama speaks in Illinois.

1.30

D1

D2

D3

D0

D0 The President greets the press in Chicago.

Obama speaks to the media in Illinois.

The band gave a concert in Japan.

0.49 0.42 0.44

0.200.240.451.07

1.63

+ +=

= + + + 0.28

0.18+

Figure 2. (Top:) The components of the WMD metric between a
query D0 and two sentences D1, D2 (with equal BOW distance).
The arrows represent flow between two words and are labeled
with their distance contribution. (Bottom:) The flow between two
sentences D3 and D0 with different numbers of words. This mis-
match causes the WMD to move words to multiple similar words.

two text documents in the (n − 1)-simplex. First, we al-
low each word i in d to be transformed into any word in
d′ in total or in parts. Let T ∈ Rn×n be a (sparse) flow
matrix where Tij ≥ 0 denotes how much of word i in d
travels to word j in d′. To transform d entirely into d′ we
ensure that the entire outgoing flow from word i equals di,
i.e.

∑
j Tij = di. Further, the amount of incoming flow

to word j must match d′j , i.e.
∑

i Tij = d′j . Finally, we
can define the distance between the two documents as the
minimum (weighted) cumulative cost required to move all
words from d to d′, i.e.

∑
i,j Tijc(i, j).

Transportation problem. Formally, the minimum cumu-
lative cost of moving d to d′ given the constraints is pro-
vided by the solution to the following linear program,

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = di ∀i ∈ {1, . . . , n} (1)

n∑
i=1

Tij = d′j ∀j ∈ {1, . . . , n}.

The above optimization is a special case of the earth
mover’s distance metric (EMD) (Monge, 1781; Rubner
et al., 1998; Nemhauser & Wolsey, 1988), a well studied
transportation problem for which specialized solvers have
been developed (Ling & Okada, 2007; Pele & Werman,
2009). To highlight this connection we refer to the resulting
metric as the word mover’s distance (WMD). As the cost
c(i, j) is a metric, it can readily be shown that the WMD is
also a metric (Rubner et al., 1998).

Visualization. Figure 2 illustrates the WMD metric on
two sentences D1 and D2 which we would like to compare

From Word Embeddings To Document Distances

to the query sentence D0. First, stop-words are removed,
leaving President, greets, press, Chicago in D0 each with
di = 0.25. The arrows from each word i in sentences D1

and D2 to word j in D0 are labeled with their contribution
to the distance Tijc(i, j). We note that the WMD agrees
with our intuition, and “moves” words to semantically sim-
ilar words. Transforming Illinois into Chicago is much
cheaper than is Japan into Chicago. This is because the
word2vec embedding places the vector vec(Illinois) closer
to vec(Chicago) than vec(Japan). Consequently, the dis-
tance from D0 to D1 (1.07) is significantly smaller than to
D2 (1.63). Importantly however, both sentences D1 and
D2 have the same bag-of-words/TF-IDF distance from D0,
as neither shares any words in common with D0. An addi-
tional example D3 highlights the flow when the number of
words does not match. D3 has term weights dj =0.33 and
excess flow is sent to other similar words. This increases
the distance, although the effect might be artificially magni-
fied due to the short document lengths as longer documents
may contain several similar words.

4.1. Fast Distance Computation

The best average time complexity of solving the WMD op-
timization problem scales O(p3 log p), where p denotes the
number of unique words in the documents (Pele & Wer-
man, 2009). For datasets with many unique words (i.e.,
high-dimensional) and/or a large number of documents,
solving the WMD optimal transport problem can become
prohibitive. We can however introduce several cheap lower
bounds of the WMD transportation problem that allows us
to prune away the majority of the documents without ever
computing the exact WMD distance.

Word centroid distance. Following the work of Rubner
et al. (1998) it is straight-forward to show (via the triangle
inequality) that the ‘centroid’ distance ‖Xd−Xd′‖2 must
lower bound the WMD between documents d,d′,

n∑
i,j=1

Tijc(i, j) =
n∑

i,j=1

Tij‖xi − x′j‖2

=
n∑

i,j=1

‖Tij(xi − x′j)‖2 ≥
∥∥∥ n∑

i,j=1

Tij(xi − x′j)
∥∥∥

2

=
∥∥∥ n∑

i=1

(n∑
j=1

Tij

)
xi −

n∑
j=1

(n∑
i=1

Tij

)
x′j
∥∥∥

2

=
∥∥∥ n∑

i=1

dixi −
n∑

j=1

d′jx
′
j

∥∥∥
2

= ‖Xd−Xd′‖2.

We refer to this distance as the Word Centroid Distance
(WCD) as each document is represented by its weighted
average word vector. It is very fast to compute via a few
matrix operations and scales O(dp). For nearest-neighbor
applications we can use this centroid-distance to inform

our nearest neighbor search about promising candidates,
which allows us to speed up the exact WMD search sig-
nificantly. We can also use WCD to limit our k-nearest
neighbor search to a small subset of most promising candi-
dates, resulting in an even faster approximate solution.

Relaxed word moving distance. Although the WCD is
fast to compute, it is not very tight (see section 5). We
can obtain much tighter bounds by relaxing the WMD opti-
mization problem and removing one of the two constraints
respectively (removing both constraints results in the triv-
ial lower bound T = 0.) If just the second constraint is
removed, the optimization becomes,

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = di ∀i ∈ {1, . . . , n}.

This relaxed problem must yield a lower-bound to the
WMD distance, which is evident from the fact that every
WMD solution (satisfying both constraints) must remain a
feasible solution if one constraint is removed.

The optimal solution is for each word in d to move all its
probability mass to the most similar word in d′. Precisely,
an optimal T∗ matrix is defined as

T∗ij =

{
di if j = argminj c(i, j)
0 otherwise.

(2)

The optimality of this solution is straight-forward to show.
Let T be any feasible matrix for the relaxed problem, the
contribution to the objective value for any word i, with
closest word j∗ = argminj c(i, j), cannot be smaller:∑

j

Tijc(i, j) ≥
∑

j

Tijc(i, j∗) = c(i, j∗)
∑

j

Tij

= c(i, j∗)di =
∑

j

T∗ijc(i, j).

Therefore, T∗ must yield a minimum objective value.
Computing this solution requires only the identification of
j∗ = argmini c(i, j), which is a nearest neighbor search
in the Euclidean word2vec space. For each word vec-
tor xi in document D we need to find the most simi-
lar word vector xj in document D′. The second setting,
when the first constraint is removed, is almost identical
except that the nearest neighbor search is reversed. Both
lower bounds ultimately rely on pairwise distance compu-
tations between word vectors. These computations can be
combined and reused to obtain both bounds jointly at lit-
tle additional overhead. Let the two relaxed solutions be
`1(d,d′) and `2(d,d′) respectively. We can obtain an

From Word Embeddings To Document Distances

even tighter bound by taking the maximum of the two,
`r(d,d′) = max (`1(d,d′), `2(d,d′)), which we refer to
as the Relaxed WMD (RWMD). This bound is significantly
tighter than WCD. The nearest neighbor search has a time
complexity of O(p2), and it can be sped up further by lever-
aging out-of-the-box tools for fast (approximate or exact)
nearest neighbor retrieval (Garcia et al., 2008; Yianilos,
1993; Andoni & Indyk, 2006).

Prefetch and prune. We can use the two lower bounds to
drastically reduce the amount of WMD distance computa-
tions we need to make in order to find the k nearest neigh-
bors of a query document. We first sort all documents in in-
creasing order of their (extremely cheap) WCD distance to
the query document and compute the exact WMD distance
to the first k of these documents. Subsequently, we tra-
verse the remaining documents. For each we first check if
the RWMD lower bound exceeds the distance of the current
kth closest document, if so we can prune it. If not, we com-
pute the WMD distance and update the k nearest neighbors
if necessary. As the RWMD approximation is very tight,
it allows us to prune up to 95% of all documents on some
data sets. If the exact k nearest neighbors are not required,
an additional speedup can be obtained if this traversal is
limited to m<n documents. We refer to this algorithm as
prefetch and prune. If m=k, this is equivalent to returning
the k nearest neighbors of the WCD distance. If m=n it is
exact as only provably non-neighbors are pruned.

5. Results
We evaluate the word mover’s distance in the context
of kNN classification on eight benchmark document cat-
egorization tasks. We first describe each dataset and
a set of classic and state-of-the-art document represen-
tations and distances. We then compare the nearest-
neighbor performance of WMD and the competing meth-
ods on these datasets. Finally, we examine how the fast
lower bound distances can speedup nearest neighbor com-
putation by prefetching and pruning neighbors. Mat-
lab code for the WMD metric is available at http://
matthewkusner.com

5.1. Dataset Description and Setup

We evaluate all approaches on 8 supervised document
datasets: BBCSPORT: BBC sports articles between 2004-
2005, TWITTER: a set of tweets labeled with sentiments
‘positive’, ‘negative’, or ‘neutral’ (Sanders, 2011) (the
set is reduced due to the unavailability of some tweets),
RECIPE: a set of recipe procedure descriptions labeled by
their region of origin, OHSUMED: a collection of medi-
cal abstracts categorized by different cardiovascular dis-
ease groups (for computational efficiency we subsample
the dataset, using the first 10 classes), CLASSIC: sets of sen-

Table 1. Dataset characteristics, used in evaluation.
BOW UNIQUE

NAME n DIM. WORDS (AVG) |Y|
BBCSPORT 517 13243 117 5
TWITTER 2176 6344 9.9 3

RECIPE 3059 5708 48.5 15
OHSUMED 3999 31789 59.2 10
CLASSIC 4965 24277 38.6 4
REUTERS 5485 22425 37.1 8
AMAZON 5600 42063 45.0 4
20NEWS 11293 29671 72 20

tences from academic papers, labeled by publisher name,
REUTERS: a classic news dataset labeled by news topics
(we use the 8-class version with train/test split as described
in Cardoso-Cachopo (2007)), AMAZON: a set of Amazon
reviews which are labeled by category product in {books,
dvd, electronics, kitchen} (as opposed to by sentiment),
and 20NEWS: news articles classified into 20 different
categories (we use the “bydate” train/test split1 Cardoso-
Cachopo (2007)). We preprocess all datasets by removing
all words in the SMART stop word list (Salton & Buckley,
1971). For 20NEWS, we additionally remove all words that
appear less than 5 times across all documents. Finally, to
speed up the computation of WMD (and its lower bounds)
we limit all 20NEWS documents to the most common 500
words (in each document) for WMD-based methods.

We split each dataset into training and testing subsets (if not
already done so). Table 1 shows relevant statistics for each
of these training datasets including the number of inputs
n, the bag-of-words dimensionality, the average number
of unique words per document, and the number of classes
|Y|. The word embedding used in our WMD implemen-
tation is the freely-available word2vec word embedding2

which has an embedding for 3 million words/phrases (from
Google News), trained using the approach in Mikolov et al.
(2013b). Words that are not present in the pre-computed
word2vec model are dropped for the WMD metric (and its
lower bounds), but kept for all baselines (thus giving the
baselines a slight competitive advantage).

We compare against 7 document representation baselines:

bag-of-words (BOW). A vector of word counts of dimen-
sionality d, the size of the dictionary.

TFIDF term frequency-inverse document frequency
(Salton & Buckley, 1988): the bag-of-words representa-
tion divided by each word’s document frequency.

BM25 Okapi: (Robertson et al., 1995) a ranking function
that extends TF-IDF for each word w in a document D:

BM25(w, D) = IDF (w)TF (w,D)(k1+1)

TF (w,D)+k1(1−b+b
|D|

Davg
)

where IDF (w) is the inverse document frequency of word

1http://qwone.com/˜jason/20Newsgroups/
2https://code.google.com/p/word2vec/

http://matthewkusner.com
http://matthewkusner.com
http://qwone.com/~jason/20Newsgroups/
https://code.google.com/p/word2vec/

From Word Embeddings To Document Distances

1 2 3 4 5 6 7 8
0
10
20
30
40
50
60
70

twitter recipe ohsumed classic reuters amazon

te
st

 e
rr

or
 % 43

33

44

33 32 32
29

66
63 61

49 51

44

36

8.0 9.7

62

44 41
35

6.95.06.7
2.8

33
29

14
8.16.96.3

3.5

59

42

28

14
17

12
9.37.4

34

17
22 21

8.46.44.3

21

4.6

53 53
59

54
48

45
43

51
56 54

58

36
40

31 29 27

20newsbbcsport

k-nearest neighbor error
BOW [Frakes & Baeza-Yates, 1992]
TF-IDF [Jones, 1972]
Okapi BM25 [Robertson & Walker, 1994]

LSI [Deerwester et al., 1990]
LDA [Blei et al., 2003]
mSDA [Chen et al., 2012]
Componential Counting Grid [Perina et al., 2013]

Word Mover's Distance

Figure 3. The kNN test error results on 8 document classification data sets, compared to canonical and state-of-the-art baselines methods.

1 2 3 4 5 6 7 8
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

av
er

ag
e

er
ro

r w
.r.

t.
BO

W 1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

1.29
1.15

1.0
0.72

0.60 0.55 0.49 0.42

BOW
TF-IDF
Okapi BM25

LSI
LDA
mSDA
CCG

WMD

Figure 4. The kNN test errors of various document metrics aver-
aged over all eight datasets, relative to kNN with BOW.

w, TF (w, D) is its term frequency in document D, |D| is
the number of words in the document, Davg is the average
size of a document, and k1 and b are free parameters.

LSI Latent Semantic Indexing (Deerwester et al., 1990):
uses singular value decomposition on the BOW representa-
tion to arrive at a semantic feature space.

LDA Latent Dirichlet Allocation (Blei et al., 2003): a
celebrated generative model for text documents that learns
representations for documents as distributions over word
topics. We use the Matlab Topic Modeling Toolbox
Steyvers & Griffiths (2007) and allow 100 iterations for
burn-in and run the chain for 1000 iterations afterwards.
Importantly, for each dataset we train LDA transductively,
i.e. we train on the union of the training and holdout sets.

mSDA Marginalized Stacked Denoising Autoencoder
(Chen et al., 2012): a representation learned from stacked
denoting autoencoders (SDAs), marginalized for fast train-
ing. In general, SDAs have been shown to have state-of-
the-art performance for document sentiment analysis tasks
(Glorot et al., 2011). For high-dimensional datasets (i.e.,
all except BBCSPORT, TWITTER, and RECIPE) we use ei-
ther the high-dimensional version of mSDA (Chen et al.,
2012) or limit the features to the top 20% of the words (or-
dered by occurence), whichever performs better.

CCG Componential Counting Grid (Perina et al.,

Table 2. Test error percentage and standard deviation for different
text embeddings. NIPS, AMZ, News are word2vec (w2v) models
trained on different data sets whereas HLBL and Collo were also
obtained with other embedding algorithms.

DOCUMENT k-NEAREST NEIGHBOR RESULTS
DATASET HLBL CW NIPS AMZ NEWS

(W2V) (W2V) (W2V)
BBCSPORT 4.5 8.2 9.5 4.1 5.0
TWITTER 33.3 33.7 29.3 28.1 28.3

RECIPE 47.0 51.6 52.7 47.4 45.1
OHSUMED 52.0 56.2 55.6 50.4 44.5
CLASSIC 5.3 5.5 4.0 3.8 3.0
REUTERS 4.2 4.6 7.1 9.1 3.5
AMAZON 12.3 13.3 13.9 7.8 7.2

2013): a generative model that directly generalizes the
Counting Grid (Jojic & Perina, 2011), which models doc-
uments as a mixture of word distributions, and LDA (Blei
et al., 2003). We use the grid location admixture probabil-
ity of each document as the new representation.

For each baseline we use the Euclidean distance for kNN
classification. All free hyperparameters were set with
Bayesian optimization for all algorithms (Snoek et al.,
2012). We use the open source MATLAB implementation
“bayesopt.m” from Gardner et al. (2014).3

5.2. Document classification

Document similarities are particularly useful for classifica-
tion given a supervised training dataset, via the kNN de-
cision rule (Cover & Hart, 1967). Different from other
classification techniques, kNN provides an interpretable
certificate (i.e., in the form of nearest neighbors) that al-
low practitioners the ability to verify the prediction result.
Moreover, such similarities can be used for ranking and
recommendation. To assess the performance of our met-
ric on classification, we compare the kNN results of the
WMD with each of the aforementioned document repre-
sentations/distances. For all algorithms we split the train-

3http://tinyurl.com/bayesopt

http://tinyurl.com/bayesopt

From Word Embeddings To Document Distances

1
0

0.2
0.4
0.6
0.8
1

1.2

1
0

0.2
0.4
0.6
0.8
1

1.21.2
1.0

0.8

0.6

0.4

0.2

RWMD WMDWCDRWMDRWMD

0.93

0.56 0.54
0.45 0.42

0

average kNN error w.r.t. BOW

c1 c2

1.2
1.0

0.8

0.6

0.4

0.2

RWMD WMDWCDRWMDRWMD

0.92 0.92

0.30

0.96 1.0

0

average distance w.r.t. WMD

c1 c2

Figure 5. (Left:) The average distances of lower bounds as a ratio
w.r.t WMD. (Right:) kNN test error results on 8 datasets, com-
pared to canonical and state-of-the-art baseline methods.

ing set into a 80/20 train/validation for hyper-parameter
tuning. It is worth emphasizing that BOW, TF-IDF, BM25
and WMD have no hyperparameters and thus we only op-
timize the neighborhood size (k ∈ {1, . . . , 19}) of kNN.

Figure 3 shows the kNN test error of the 8 aforementioned
algorithms on the 8 document classification datasets. For
datasets without predefined train/test splits (BBCSPORT,
TWITTER, RECIPE, CLASSIC, AMAZON) we averaged over
5 train/test splits and we report means and standard errors.
We order the methods by their average performance. Per-
haps surprisingly, LSI and LDA outperform the more re-
cent approaches CCG and mSDA. For LDA this is likely
because it is trained transductively. One explanation for
why LSI performs so well may be the power of Bayesian
Optimization to tune the single LSI hyperparameter: the
number of basis vectors to use in the representation. Fine-
tuning the number of latent vectors may allow LSI to create
a very accurate representation. On all datasets except two
(BBCSPORT, OHSUMED), WMD achieves the lowest test
error. Notably, WMD achieves almost a 10% reduction in
(relative) error over the second best method on TWITTER
(LSI). It even reaches error levels as low as 2.8% error on
classic and 3.5% error on REUTERS, even outperforming
transductive LDA, which has direct access to the features
of the test set. One possible explanation for the WMD per-
formance on OHSUMED is that many of these documents
contain technical medical terms which may not have a word
embedding in our model. These words must be discarded,
possibly harming the accuracy of the metric.

Figure 4 shows the average improvement of each method,
relative to BOW, across all datasets. On average, WMD
results in only 0.42 of the BOW test-error and outperforms
all other metrics that we compared against.

5.3. Word embeddings.

As our technique is naturally dependent on a word em-
bedding, we examine how different word embeddings af-
fect the quality of k-nearest neighbor classification with
the WMD. Apart from the aforementioned freely-available
Google News word2vec model, we trained two other
word2vec models on a papers corpus (NIPS) and a product
review corpus (AMZ). Specifically, we extracted text from

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.2

1.0
0.8

0.6

0.4

0.2

1.4

0
500 1500 25001000 20000

amazon

WMD
RWMD
WCD

training input index

di
st

an
ce

1.6

1.4

1.2

1.0

0.8
0.6

0.4

1.6

0.2

twitter

200 400 800 10006000
training input index

0

Figure 6. The WCD, RWMD, and WMD distances (sorted by
WMD) for a random test query document.

all NIPS conference papers within the years 2004-2013 and
trained a Skip-gram model on the dataset as per Mikolov
et al. (2013b). We also used the 340, 000 Amazon re-
view dataset of Blitzer et al. (2006) (a superset of the ama-
zon classification dataset used above) to train the review-
based word2vec model. Prior to training we removed stop
words for both models, resulting in 36,425,259 words for
the NIPS dataset (50-dimensional) and 90,005,609 words
for the Reviews dataset (100-dimensional) (compared to
the 100 billion word dataset of Google News (NEWS)).

Additionally, we experimented with the pre-trained em-
beddings of the hierarchical log-bilinear model (HLBL)
(Mnih & Hinton, 2009) and the model of Collobert & We-
ston (2008) (CW)4. The HLBL model contains 246, 122
unique 50-dimensional word embeddings and the Collobert
model has 268, 810 unique word embeddings (also 50-
dimensional). Table 2 shows classification results on all
data sets except 20NEWS (which we dropped due to run-
ning time constraints). On the five larger data sets, the 3
million word Google NEWS model performs superior to
the smaller models. This result is in line with those of
Mikolov et al. (2013a), that in general more data (as op-
posed to simply relevant data) creates better embeddings.
Additionally, the three word2vec (w2v) models outperform
the HLBL and Collobert models on all datasets. The clas-
sification error deteriorates when the underlying model is
trained on very different vocabulary (e.g. NIPS papers vs
cooking recipes), although the performance of the Google
NEWS corpus is surprisingly competitive throughout.

5.4. Lower Bounds and Pruning

Although WMD yields by far the most accurate classifica-
tion results, it is fair to say that it is also the slowest met-
ric to compute. We can therefore use the lower bounds
from section 4 to speed up the distance computations. Fig-
ure 6 shows the WMD distance of all training inputs to two
randomly chosen test queries from TWITTER and AMAZON
in increasing order. The graph also depicts the WCD and
RWMD lower bounds. The RWMD is typically very close
to the exact WMD distance, whereas the cheaper WCD

4Both available at http://metaoptimize.com/
projects/wordreprs/

http://metaoptimize.com/projects/wordreprs/
http://metaoptimize.com/projects/wordreprs/

From Word Embeddings To Document Distances

1 2 3 4 5 6 7 8
0

10

20

30

40

50

te
st

 e
rr

or
 %

twitter recipe ohsumed classic reuters amazonbbcsport 20news

prefetch and prune

10
9x

29
x

20
x

14
x

3.1
x
2.9

x
2.7

x
2.6

x

18
x

13
x
12

x
10

x 28
x

20
x

16
x 12

x

13
x

12
x

12
x

11
x 14

x
12

x
12

x
11

x
22

x
13

x
11

x
8.5

x

66
x
62

x
60

x
58

x
speedup w.r.t.

exhaustive
WMD

4.1
x
16

x

1.0
x
1.1

x

2.7
x
4.0

x
2.2

x
5.5

x

2.7
x
3.2

x
2.8

x
3.3

x 3.0
x
4.9

x

5.5
x
12

x

(WCD)

(WMD)
RWMD

m=k
m=2k
m=4k
m=8k
m=n

2.1 s 0.1 s 1.2 s 2.5 s 1.3 s 1.4 s 2.5 s 8.8 s

time per test
input with the
exhaustive

WMD

Figure 7. Test errors (in %) and speedups of the prefetch and prune algorithm as the document cutoff, m, changes. All speedups are
relative to the exhaustive k-NN search with the WMD (shown on the very top). The error bars indicate standard error (if applicable).

approximation is rather loose. The tightness of RWMD
makes it valuable to prune documents that are provably not
amongst the k nearest neighbors. Although the WCD is
too loose for pruning, its distances increase with the exact
WMD distance, which makes it a useful heuristic to iden-
tify promising nearest neighbor candidates.

The tightness of each lower bound can be seen in the
left image in Figure 5 (averaged across all test points).
RWMDC1, RWMDC2 correspond to WMD with only con-
straints #1 and #2 respectively, which result in comparable
tightness. WCD is by far the loosest and RWMD the tight-
est bound. Interestingly, this tightness does not directly
translate into retrieval accuracy. The right image shows
the average kNN errors (relative to the BOW kNN error)
if the lower bounds are used directly for nearest neighbor
retrieval. The two most left columns represent the two in-
dividual lower bounds of the RWMD approximation. Both
perform poorly (worse than WCD), however their maxi-
mum (RWMD) is surprisingly accurate and yields kNN er-
rors that are only a little bit less accurate than the exact
WMD. In fact, we would like to emphasize that the aver-
age kNN error with RWMD (0.45 relative to BOW) still
outperforms all other baselines (see Figure 4).

Finally, we evaluate the speedup and accuracy of the exact
and approximate versions of the prefetch and prune algo-
rithm from Section 4 under various values of m (Figure 7).
When m = k we use the WCD metric for classification
(and drop all WMD computations which are unnecessary).
For all other results we prefetch m instances via WCD, use
RWMD to check if a document can be pruned and only
if not compute the exact WMD distance. The last bar for
each dataset shows the test error obtained with the RWMD
metric (omitting all WMD computations). All speedups
are reported relative to the time required for the exhaustive
WMD metric (very top of the figure) and were run in par-
alell on 4 cores (8 cores for 20NEWS) of an Intel L5520
CPU with 2.27Ghz clock frequency.

First, we notice in all cases the increase in error through
prefetching is relatively minor whereas the speedup can be

substantial. The exact method (m = n) typically results in
a speedup between 2× and 5× which appears pronounced
with increasing document lengths (e.g. 20NEWS). It is
interesting to observe, that the error drops most between
m = k and m = 2k, which might yield a sweet spot be-
tween accuracy and retrieval time for time-sensitive appli-
cations. As noted before, using RWMD directly leads to
impressively low error rates and average retrieval times be-
low 1s on all data sets. We believe the actual timing could
be improved substantially with more sophisticated imple-
mentations (our code is in MATLAB) and parallelization.

6. Discussion and Conclusion
It is worthwhile considering why the WMD metric leads to
such low error rates across all data sets. We attribute this
to its ability to utilize the high quality of the word2vec em-
bedding. Trained on billions of words, the word2vec em-
bedding captures knowledge about text documents in the
English language that may not be obtainable from the train-
ing set alone. As pointed out by Mikolov et al. (2013a),
other algorithms (such as LDA or LSI) do not scale nat-
urally to data sets of such scale without special approxi-
mations which often counteract the benefit of large-scale
data (although it is a worthy area of future work). Sur-
prisingly, this “latent” supervision benefits tasks that are
different from the data used to learn the word embedding.

One attractive feature of the WMD, that we would like
to explore in the future, is its interpretability. Document
distances can be dissected into sparse distances between
words, which can be visualized and explained to humans.
Another interesting direction will be to incorporate docu-
ment structure into the distances between words by adding
penalty terms if two words occur in different sections of
similarly structured documents. If for example the WMD
metric is used to measure the distance between academic
papers, it might make sense to penalize word movements
between the introduction and method section more than
word movements from one introduction to another.

From Word Embeddings To Document Distances

Acknowledgments
KQW and MJK are supported by NSF grants IIA-1355406,
IIS-1149882, EFRI-1137211. We thank the anonymous re-
viewers for insightful feedback.

References
Andoni, A. and Indyk, P. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In
FOCS, pp. 459–468. IEEE, 2006.

Aslam, J. A. and Frost, M. An information-theoretic mea-
sure for document similarity. In SIGIR, volume 3, pp.
449–450. Citeseer, 2003.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:
993–1022, 2003.

Blitzer, J., McDonald, R., and Pereira, F. Domain adapta-
tion with structural correspondence learning. In EMNLP,
pp. 120–128. ACL, 2006.

Brochu, E. and Freitas, N. D. Name that song! In NIPS,
pp. 1505–1512, 2002.

Cardoso-Cachopo, A. Improving Methods for Single-label
Text Categorization. PdD Thesis, Instituto Superior Tec-
nico, Universidade Tecnica de Lisboa, 2007.

Chen, M., Xu, Z., Weinberger, K. Q., and Sha, F. Marginal-
ized denoising autoencoders for domain adaptation. In
ICML, 2012.

Collobert, R. and Weston, J. A unified architecture for
natural language processing: Deep neural networks with
multitask learning. In ICML, pp. 160–167. ACM, 2008.

Cover, T. and Hart, P. Nearest neighbor pattern classifica-
tion. Information Theory, IEEE Transactions on, 13(1):
21–27, 1967.

Croft, W. B. and Lafferty, J. Language modeling for infor-
mation retrieval, volume 13. Springer, 2003.

Cuturi, Marco. Sinkhorn distances: Lightspeed computa-
tion of optimal transport. In Advances in Neural Infor-
mation Processing Systems, pp. 2292–2300, 2013.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., and Harshman, R. A. Indexing by latent semantic
analysis. Journal of the American Society of Information
Science, 41(6):391–407, 1990.

Garcia, Vincent, Debreuve, Eric, and Barlaud, Michel. Fast
k nearest neighbor search using gpu. In CVPR Workshop,
pp. 1–6. IEEE, 2008.

Gardner, J., Kusner, M. J., Xu, E., Weinberger, K. Q., and
Cunningham, J. Bayesian optimization with inequality
constraints. In ICML, pp. 937–945, 2014.

Glorot, X., Bordes, A., and Bengio, Y. Domain adaptation
for large-scale sentiment classification: A deep learning
approach. In ICML, pp. 513–520, 2011.

Grauman, K. and Darrell, T. Fast contour matching using
approximate earth mover’s distance. In CVPR, volume 1,
pp. I–220. IEEE, 2004.

Greene, D. and Cunningham, P. Practical solutions to the
problem of diagonal dominance in kernel document clus-
tering. In ICML, pp. 377–384. ACM, 2006.

Hearst, M. A. Multi-paragraph segmentation of expository
text. In ACL, pp. 9–16. Association for Computational
Linguistics, 1994.

Jojic, N. and Perina, A. Multidimensional counting grids:
Inferring word order from disordered bags of words. In
UAI. 2011.

Le, Quoc V and Mikolov, Tomas. Distributed representa-
tions of sentences and documents. In ICML, 2014.

Levina, E. and Bickel, P. The earth mover’s distance is
the mallows distance: Some insights from statistics. In
ICCV, volume 2, pp. 251–256. IEEE, 2001.

Ling, Haibin and Okada, Kazunori. An efficient earth
mover’s distance algorithm for robust histogram compar-
ison. Pattern Analysis and Machine Intelligence, 29(5):
840–853, 2007.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. In
Proceedsings of Workshop at ICLR, 2013a.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. Distributed representations of words and
phrases and their compositionality. In NIPS, pp. 3111–
3119, 2013b.

Mikolov, T., Yih, W., and Zweig, G. Linguistic regularities
in continuous space word representations. In NAACL,
pp. 746–751. Citeseer, 2013c.

Mnih, A. and Hinton, G. E. A scalable hierarchical dis-
tributed language model. In NIPS, pp. 1081–1088, 2009.

Monge, G. Mémoire sur la théorie des déblais et des rem-
blais. De l’Imprimerie Royale, 1781.

Nemhauser, G. L. and Wolsey, L. A. Integer and combina-
torial optimization, volume 18. Wiley New York, 1988.

From Word Embeddings To Document Distances

Ontrup, J. and Ritter, H. Hyperbolic self-organizing maps
for semantic navigation. In NIPS, volume 14, pp. 2001,
2001.

Pele, O. and Werman, M. Fast and robust earth mover’s
distances. In ICCV, pp. 460–467. IEEE, 2009.

Perina, A., Jojic, N., Bicego, M., and Truski, A. Documents
as multiple overlapping windows into grids of counts. In
NIPS, pp. 10–18. 2013.

Petterson, J., Buntine, W., Narayanamurthy, S. M., Cae-
tano, T. S., and Smola, A. J. Word features for latent
dirichlet allocation. In NIPS, pp. 1921–1929, 2010.

Quadrianto, N., Song, L., and Smola, A. J. Kernelized sort-
ing. In NIPS, pp. 1289–1296, 2009.

Ren, Z., Yuan, J., and Zhang, Z. Robust hand gesture
recognition based on finger-earth mover’s distance with
a commodity depth camera. In Proceedings of ACM in-
ternational conference on multimedia, pp. 1093–1096.
ACM, 2011.

Robertson, S. E. and Walker, S. Some simple effective
approximations to the 2-poisson model for probabilis-
tic weighted retrieval. In Proceedings ACM SIGIR con-
ference on Research and development in information re-
trieval, pp. 232–241. Springer-Verlag New York, Inc.,
1994.

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu,
M. M., Gatford, M., et al. Okapi at trec-3. NIST SPE-
CIAL PUBLICATION SP, pp. 109–109, 1995.

Rubner, Y., Tomasi, C., and Guibas, L. J. A metric for
distributions with applications to image databases. In
ICCV, pp. 59–66. IEEE, 1998.

Salton, G. and Buckley, C. The smart retrieval systemex-
periments in automatic document processing. 1971.

Salton, G. and Buckley, C. Term-weighting approaches in
automatic text retrieval. Information processing & man-
agement, 24(5):513–523, 1988.

Sanders, N. J. Sanders-twitter sentiment corpus, 2011.

Schölkopf, B., Weston, J., Eskin, E., Leslie, C., and No-
ble, W. S. A kernel approach for learning from almost
orthogonal patterns. In ECML, pp. 511–528. Springer,
2002.

Shirdhonkar, S. and Jacobs, D. W. Approximate earth
movers distance in linear time. In CVPR, pp. 1–8. IEEE,
2008.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In NIPS, pp. 2951–2959, 2012.

Steyvers, M. and Griffiths, T. Probabilistic topic models.
Handbook of latent semantic analysis, 427(7):424–440,
2007.

Turian, J., Ratinov, L., and Bengio, Y. Word representa-
tions: a simple and general method for semi-supervised
learning. In ACL, pp. 384–394. Association for Compu-
tational Linguistics, 2010.

Wan, X. A novel document similarity measure based on
earth movers distance. Information Sciences, 177(18):
3718–3730, 2007.

Yianilos, Peter N. Data structures and algorithms for near-
est neighbor search in general metric spaces. In Proceed-
ings of ACM-SIAM Symposium on Discrete Algorithms,
pp. 311–321. Society for Industrial and Applied Mathe-
matics, 1993.

