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Abstract
We present Stochastic Neighbor Compression
(SNC), an algorithm to compress a dataset for
the purpose of k-nearest neighbor (kNN) clas-
sification. Given training data, SNC learns a
much smaller synthetic data set, that minimizes
the stochastic 1-nearest neighbor classification
error on the training data. This approach has sev-
eral appealing properties: due to its small size,
the compressed set speeds up kNN testing dras-
tically (up to several orders of magnitude, in our
experiments); it makes the kNN classifier sub-
stantially more robust to label noise; on 4 of 7
data sets it yields lower test error than kNN on
the entire training set, even at compression ra-
tios as low as 2%; finally, the SNC compression
leads to impressive speed ups over kNN even
when kNN and SNC are both used with ball-tree
data structures, hashing, and LMNN dimension-
ality reduction—demonstrating that it is comple-
mentary to existing state-of-the-art algorithms to
speed up kNN classification and leads to substan-
tial further improvements.

1. Introduction
The k-nearest neighbors (kNN) decision rule classifies an
unlabeled input by the majority label of its k nearest train-
ing inputs. It is one of the oldest and most intuitive
classification algorithms (Cover & Hart, 1967). Never-
theless, when paired with domain knowledge (Belongie
et al., 2002; Simard et al., 1992) or learned distance met-
rics (Goldberger et al., 2004; Davis et al., 2007; Weinberger
& Saul, 2009), it is highly competitive in many machine
learning applications (Tran & Sorokin, 2008). As machine
learning algorithms are increasingly used in application
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Figure 1. An illustration of the individual stages of SNC. The in-
put data (left) is first subsampled uniformly (middle) and then op-
timized to minimize leave-one-out nearest neighbor error (right).

settings, e.g. recommender systems (Sarwar et al., 2000),
the kNN rule is particularly attractive because its predic-
tions are easily explained.

An important drawback of kNN is its slow test-time per-
formance. Since it must compute the distances between
the test input and all elements in the training set, it takes
O(dn) with respect to the data dimensionality d and the
training set size n. Similarly, space requirements are also
O(dn), as the entire training set needs to be stored. This
high time and space complexity makes computing the de-
cision rule impracticable for time critical applications and
large-scale datasets—a problem that is likely to remain rel-
evant as datasets continue to grow.

There are three high-level approaches for speeding up the
testing. First is to reduce the number of distance computa-
tions to some polylogarithmic function in n, through clever
tree data structures, such as cover/ball trees (Beygelzimer
et al., 2006; Omohundro, 1989), or hashing functions (Gio-
nis et al., 1999; Andoni & Indyk, 2006). Although they
often yield impressive speed ups, these methods still store
the entire training set and their performance tends to dete-
riorate with increasing (intrinsic) data dimensionality. The
second approach is to reduce the data dimensionality d
through supervised dimensionality reduction, e.g. large
margin nearest neighbors (LMNN) (Weinberger & Saul,
2008), which is particularly effective in combination with
tree data structures. The third approach is to compress the
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training set by reducing the number of data inputs n. Prior
works often involve data set condensing (or thinning) (Hart,
1968; Angiulli, 2005), which subsample the training data
according to clever rules and remove redundant inputs. Al-
ternative algorithms shrink the data to few cluster centers
(Chang, 1974; Kohonen, 1990a), which can be optimized
with multi-phase initialization procedures (Decaestecker,
1997; Liu & Nakagawa, 1999). Others learn prototypes by
‘softening’ the kNN decision rule at test-time (Bermejo &
Cabestany, 1999), preventing the use of tree data structures.

In this paper, we introduce a novel approach for data
set compression, Stochastic Neighbor Compression (SNC),
which falls into the third category of algorithms. SNC
compresses the training data by learning a new set of m
synthetic reference vectors, where m� n. Figure 1 illus-
trates our algorithm schematically. We initialize our com-
pressed set with a small subset of the training set, sam-
pled uniformly at random. We then optimize the position
of these inputs directly to minimize the classification error
on the training set. To this end, we relax the kNN rule into
a stochastic neighborhood framework (Goldberger et al.,
2004; Hinton & Roweis, 2002), which allows us to approx-
imate the classification error of the training set with a con-
tinuous and differentiable function.

We are making four novel contributions: 1. we introduce
and derive SNC, a novel data compression algorithm for
kNN; 2. we demonstrate the efficacy of SNC on seven real
world data sets and show that on all tasks it outperforms ex-
isting algorithms for data set reduction and on 4/7 data sets
kNN on the full training set obtains even higher error rates
than kNN with SNC—at a staggeringly low compression
ratio of only 4%; 3. We conjecture and observe empirically
that SNC substantially increases robustness of kNN to (la-
bel) noise; 4. We demonstrate that SNC works well along-
side existing algorithms — such as ball trees, hashing, and
dimensionality reduction — that speed up nearest neighbor
classification. In fact, it adds impressive speed ups of one
order of magnitude on top of the existing state-of-the-art.

2. Background
We denote the training data to be a set of input vec-
tors {x1, . . . ,xn} ⊂ Rd, arranged as columns in matrix
X∈Rd×n, and corresponding labels {y1, . . . , yn} ⊆ Y ,
where Y contains some finite number of classes.1

Our approach draws from two ideas in machine learning
that use stochastic neighborhood distributions: stochas-
tic neighborhood embeddings (Hinton & Roweis, 2002),
and neighborhood components analysis (Goldberger et al.,

1Throughout this manuscript we will abuse notation slightly
and treat X as a set of column vectors or matrix interchangeably
(i.e. we allow the notation xi∈X but also X>y).

2004). Here, we describe both in some detail.

Stochastic Neighborhood Embedding (SNE). Hinton &
Roweis (2002) introduced SNE, an algorithm to visualize
a given data set by learning a low-dimensional embedding
in 2d or 3d. For two points xi and xj , we define the dis-
similarity measure d2ij ; it is commonly an element of the
Gaussian kernel d2ij = γ2i ‖xi − xj‖2, where γ2i is the pre-
cision of the Gaussian distribution. The authors define a
stochastic neighborhood, which captures the neighborhood
relation between inputs xi and xj through probability pij
of the event that xi is assigned xj as its nearest neighbor,

pij =
exp(−d2ij)∑n

k=1 exp (−d2ik)
. (1)

The low dimensional embedding is optimized to approx-
imately preserve the stochastic neighborhood distribution
of the input data. More precisely, SNE minimizes the
KL-divergence between the original (high dimensional)
stochastic neighborhoods and the induced neighborhoods
in the low dimensional space. This approach was recently
further refined by Van der Maaten & Hinton (2008) to yield
improved visualizations by substituting the local Gaussian
distributions with Student t-distributions in the input space.

Neighborhood Components Analysis (NCA). Gold-
berger et al. (2004) introduced NCA, an algorithm that uses
stochastic neighborhoods to learn a Mahalanobis pseudo-
metric, dij = ‖A(xi − xj)‖. This metric is parameterized
by a matrix A and is incorporated into the stochastic neigh-
borhood in (1). In contrast to SNE, NCA is a supervised
learning algorithm and optimizes this metric explicitly for
kNN. To improve the kNN accuracy, it maximizes an ap-
proximation of the leave-one-out (LOO) training accuracy
of the 1 stochastic neighbor rule. Under this rule, an input
xi with label yi is classified correctly if its nearest neigh-
bor is any xj 6= xi from the same class (yj = yi). The
probability of this event can be stated as

pi =
∑

j:yj=yi

pij , (2)

where we define pii =0. NCA learns A by maximizing (2)
over all inputs xi∈X.

3. Stochastic Neighbor Compression
In this section, we describe our approach, called Stochastic
Neighbor Compression (SNC). SNC is inspired by the sem-
inal works from Section 2 and uses a stochastic neighbor-
hood distribution to reduce the training set, with n data in-
puts, into a compressed set with m vectors, where m� n.
This much smaller compressed set is then used as a ref-
erence set during kNN testing. For standard kNN imple-
mentations, the test time and space complexity reduce from
O
(
nd
)

to only O
(
md
)
.
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Stochastic Reference. We learn a new compressed set of
reference vectors Z = [z1, . . . , zm] with labels ŷ1, . . . , ŷm.
This data set is initialized by uniformly subsampling m
vectors from X, while maintaining their exact labels. The
labels ŷi will be fixed throughout, whereas the vectors Z
will be optimized. Let us define the probability that input
xi is assigned zj as nearest reference vector as

pij =
exp(−γ2‖xi − zj‖2)∑m
k=1 exp(−γ2‖xi − zk‖2)

. (3)

Input xi is classified correctly if and only if it is paired
with a reference vector from the same class ŷj = yi. The
probability of this event is precisely given by (2).

Objective. Ideally, we want pi = 1 for all xi ∈X, corre-
sponding to 100% classification accuracy of X on Z. It is
straight forward to see that the KL-divergence (Goldberger
et al., 2004) between this “perfect” distribution and pi is

KL(1||pi) = − log(pi). (4)

Our goal is to position the compressed set Z such that as
many training inputs as possible are classified correctly. In
other words, we need pi to be close to 1 for all inputs xi ∈
X. Hence, we define our loss function to sum over the KL-
divergences (4) for all inputs in X,

L(Z) = −
n∑

i=1

log(pi) (5)

Gradient with respect to Z. We minimize the objective
(5) with conjugate gradient descent. In order to state the
gradients in simpler form, we first define two additional
matrices Q,P ∈ Rn×m as

[Q]ij = (δyi,yj
− pi), [P]ij =

pij
pi
.

Here, δyi,yj ∈ {0, 1} denotes the Dirac Delta function and
takes on value 1 if and only if yi = yj . Although we omit
the details of the derivation, this notation allows us to state
the gradient of L with respect to the compressed set Z en-
tirely in matrix operations,

∂L
∂Z

= −2

(
X
(
Q ◦P

)
− Z∆

((
Q ◦P

)>
1n

))
, (6)

where ◦ is the Hadamard (element-wise) product, 1n is the
n×1 vector of all ones, and ∆(·) signifies placing a vector
along the diagonal of an otherwise 0 matrix.

Computational complexity. The computational com-
plexity of each gradient descent iteration with respect to
Z costs O

(
nm
)

to compute (Q◦P), O
(
dnm

)
to compute

X(Q◦P), and O
(
dm2

)
to compute Z∆((Q◦P)>1n), re-

sulting in O
(
dmn

)
overall complexity.

Algorithm 1 SNC in pseudo-code.
1: Inputs: {X,y}; new (compressed) data set size m
2: Initialize Z by class-based sampling m inputs from X
3: Learn Z with conj. gradient descent, eq. (6)
4: Return Z

Implementation. We optimize Z by minimizing (5) with
conjugate gradient descent (we use a freely-available Mat-
lab implementation 1) and provide our implementation of
SNC as open source available for download at http:
//tinyurl.com/msovcfu. The individual steps of
the SNC approach are described in Algorithm 1.

3.1. Metric Learning Extension

Drawing directly on ideas proposed in Goldberger et al.
(2004), for additional flexibility, we can extend (3) with
an affine feature transformation matrix A,

pi =
∑

j:ŷj=yi

exp (−‖A(xi − zj)‖2)∑m
k=1 exp(−‖A(xi − zk)‖2)

. (7)

Let us denote the corresponding loss function as LA. The
resulting objective can be minimized with respect to A and
Z. This extension allows us to automatically optimize the
feature scale γ2 by setting A = γ2I; rescale features with
a diagonal matrix A = ∆; or induce dimensionality reduc-
tion with a rectangular matrix, i.e. A∈Rr×d.

Gradients w.r.t. A and Z. The gradient of L w.r.t. A is
similar to the NCA gradient in Goldberger et al. (2004),

∂LA

∂A
= −2A

n∑
i=1

m∑
j=1

pij
pi
qijvijv

>
ij , (8)

where we abbreviate vij = (xi− zj) and qij = [Q]ij . The
gradient of LA w.r.t. Z results in a modification of (6):

∂LA

∂Z
=2A>A

∂L
∂Z

. (9)

Due to additional multiplications by A, the time complex-
ity of each gradient iteration increases to O

(
d2mn + d3

)
.

(The cubic term drops if A is diagonal or of the form γ2I.)

Practical aspects. We find that the form A = γ2I leads
to comparable results as the diagonal or full matrix. It has
the added advantage that it is substantially faster and that
it alleviates the need to multiply the test data with A, as
the kNN decision rule is invariant to uniform feature scal-
ing. Optimizing the scaling factor γ2 does however affect
the compressed set Z. Also, optimizing γ2 with conjugate

1http://tinyurl.com/minimize-m

http://tinyurl.com/msovcfu
http://tinyurl.com/msovcfu
http://tinyurl.com/minimize-m
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Table 1. Characteristics of datasets used in evaluation.

DATASET STATISTICS
NAME n |Y| d (dL)

YALE-FACES 1961 38 8064 (100)
ISOLET 3898 26 617 (172)

LETTERS 16000 26 16 (16)
ADULT 32562 2 123 (50)

W8A 49749 2 300 (100)
MNIST 60000 10 784 (164)

FOREST 100000 7 54 (54)

gradient prior to optimizing Z (instead of jointly) leads to
similar results and may be preferred in practice due to its
improved running time. In our experiments, we initialize
γ2 with cross-validation and optimize it prior to learning.
We pick the initialization that yields minimal training error.

4. Results
We evaluate the efficacy of SNC on seven benchmark data
sets. We begin with a brief description of the individual
learning tasks and then evaluate the compression ratio and
test error, training time, sensitivity to noise and finally vi-
sualize the SNC decision boundary and reference vectors.

Dataset descriptions. We evaluate SNC and other train-
ing set reduction baselines on seven classification datasets
detailed in Table 1. YaleFaces (Georghiades et al., 2001)
consists of gray-scale face images of 38 individuals under
varying (label invariant) illumination conditions. The task
is to identify the individual from the image pixel values.
Isolet1 is a collection of audio feature vectors of spoken let-
ters from the English alphabet. The task is to identify which
letter is spoken based on the recorded (and pre-processed)
audio signal. Letters1 is derived from images of English
capital letters, the learning task is to identify the letter type
based on font specific features. Adult1 contains U.S. cen-
sus income and personal statistics, the task is to predict if
a household has an income over $50, 000. W8a2 contains
keyword attributes extracted from web pages and the task
is to categorize a web page into a one of a set of prede-
fined categories. MNIST3 is a set of gray-scale handwritten
digit images; the task is to identify the digit value from the
image pixels. Forest1 contains geological and map-based
data, and the task is to identify the type of ground cover
(e.g. tree type) in a given area of a map.

In addition to these data sets, we also used the USPS4 hand-
written digits data set as a development set. As we evalu-
ated SNC multiple times on its test portion, and we want to

1http://tinyurl.com/uci-ml-data
2http://tinyurl.com/libsvm-data
3http://tinyurl.com/mnist-data
4http://tinyurl.com/usps-data

clearly separate development and evaluation data, we are
not including it in this result section. The results are com-
parable to the benchmark sets included in this section.

Preprocessing. Weinberger & Saul (2008) show that
Large Margin Nearest Neighbors (LMNN) is an effective
method to speed up kNN search through dimensionality re-
duction, that is, by reducing the parameter d in the running
time O(nd). LMNN learns a projection into a lower di-
mensional space that speeds up kNN while maintaining (or
improving) the classification error. We can validate this ob-
servation on our benchmark tasks and therefore pre-process
all datasets with LMNN, which improves the kNN speed
and accuracy for nearly all datasets.

For Isolet and MNIST, the dimensionality is reduced as de-
scribed in Weinberger & Saul (2009). For the remaining
datasets, if the input dimensionality d is ≥ 200 it is re-
duced to 100 with LMNN, and if it is between 100 and
200, it is reduced to 50. For the YaleFaces data set, we fol-
low Weinberger & Saul (2009) and first rescale the images
to 48x42 pixels, then reduce the dimensionality with PCA
(to 200) while omitting the leading 5 principal components
(which capture large variations in image brightness). Fi-
nally, we apply LMNN to reduce the dimensionality further
to d = 100. Table 1 lists the dimensionality of each dataset
before (d) and after (dL) LMNN preprocessing. For Forest,
we follow Angiulli (2005) who subsample uniformly.

Implementation. For purposes of this evaluation, SNC is
initialized by subsampling inputs based on the class distri-
bution up to the desired compression rate. For testing, we
use the 1NN (1 Nearest Neighbor) rule for all of the algo-
rithms. Results of SNC and of any initialization-dependent
baselines are reported with the average and standard devi-
ation over 5 runs. Neither YaleFaces nor Forest have pre-
defined test sets and so we report the average and standard
deviations in performance over 5 and 10 splits, respectively.

Baselines. Figure 2 shows the test error of kNN evaluated
on a compressed training set generated by SNC (solid blue
line) with A = γ2I. We depict varying rates of compres-
sion, and compare against the following related baselines:
1. kNN without compression both before (brown dotted
line) and after LMNN dimensionality reduction (red dot-
ted line), 2. kNN on a reference set subsampled uniformly
from the training set based on the class balance (pink dot-
ted line), 3. Approximate kNN via locality-sensitive hash-
ing LSH (Gionis et al., 1999), using the implementation by
Aly et al. (2011) (purple dotted line) 4. CNN (Hart, 1968)
(orange line), and 5. FCNN (Angiulli, 2005) (green line).
CNN and FCNN select training-consistent subsets and are
arguably the most popular training set reduction algorithms
for kNN. Both methods are briefly described in Section 5.

http://tinyurl.com/uci-ml-data
http://tinyurl.com/libsvm-data
http://tinyurl.com/mnist-data
http://tinyurl.com/usps-data
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Figure 2. kNN test error rates after training set compression obtained by various algorithms. See text for details.

Both SNC and subsampling can be performed at varying
rates of compression and are plotted at compression ratios
{1%, 2%, 4%, 8%, 16%}. (We omit the 16% compression
rate for forest, due to its large size.) kNN with and with-
out LMNN does not do any compression and for better
readability both methods are depicted as horizontal lines.
For LSH we cross-validate over the number of tables and
hash functions and select the fastest setting that has equal
or less leave-one-out error compared to kNN without LSH
(for larger datasets, we performed the LSH cross-validation
on class-balanced subsamples of the training set: 10% sub-
samples of Adult, W8a and MNIST, and 5% of Forest).
Identical to SNC, we plot average LSH test error and stan-
dard deviation for multiple random initializations. CNN
and FCNN do not have a parameter for compression ratio.
However both algorithms incrementally add inputs to the
reference set and for comparison to our method with vari-
able compression rate we have depicted the errors of partial
compressed sets. For CNN, we also plot standard devia-
tions as the algorithm is order dependent. In full disclosure,

we want to point out that both CNN and FCNN as intended
by the authors would only output a single compressed set
(the rightmost point of the respective plot lines).

Error and Compression. We observe several general
trends from the results in Figure 2. Simply subsampling
the training set yields high error rates, showing that op-
timization of the compressed data set is crucial to ob-
tain good compression/error trade-offs. SNC performs ex-
tremely well on all data sets even with a compression ratio
as low as 2%. In fact, SNC clearly outperforms all other
compression methods in terms of compression/error trade-
off across all data sets—often yielding significantly lower
test error rates than CNN and FCNN under only a fraction
of their final compression ratio. SNC at ≥ 4% matches (up
to significance) or outperforms LSH error on every dataset.
Further, on almost all data sets (except W8a and Forest),
kNN with SNC can match the test error rates (with and
without LMNN) using the full training data even at very
high compression ratios (2− 4%). In fact, on 4/7 data sets,
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Table 2. SNC training times.
TRAINING TIMES

DATASET COMPRESSION RATIO
1% 2% 4% 8% 16%

YALE-FACES − 4s 6s 9s 15s
ISOLET 11s 17s 28s 50s 1m 26s

LETTERS 41s 1m 18s 2m 44s 4m 34s 8m 13s
ADULT 2m 27s 4m 1s 7m 39s 12m 51s 23m 18s

W8A 6m 5s 10m 19s 19m 26s 39m 12s 1h 12m
MNIST 17m 18s 36m 43s 1h 13m 2h 17m 4h 57m

FOREST 17m 38s 33m 55m 44s 1h 45m −

kNN with SNC at a compression ratio of 4% achieves even
lower test error than kNN using the full training set.

The last observation is particularly surprising, as one would
expect an increase in error due to compression, rather than
a reduction. However, one explanation for this effect is that
SNC optimizes the compressed data especially to do well
with kNN classification. A good example is the Adult data
set, which has a strong class imbalance with 78% of the
data belonging to one class. In other words, this is a data
set in which kNN barely outperforms predicting the most
common label. With high compression, SNC can position
its learned reference vectors in a way to learn a simpler de-
cision boundary and outperform kNN drastically with 0.15
vs. 0.20 error (zoomed in portion of the graph).

Time complexity and training time. Training times for
SNC, averaged across 5 runs, are given in Table 2. SNC
(with A = γ2I) is expected to scale with complexity
O(dmn) per iteration. As the size of the compressed set
m doubles between columns, training times roughly dou-
ble as well. Variations in dimensionality and training set
sizes among datasets make comparisons along the columns
less precise, but training times do not seem to exceed the-
oretical expectations. All experiments were performed on
an 8-core Intel L5520 CPU with 2.27GHz clock frequency.

Speed-up at test time. At testing time, standard imple-
mentations of kNN testing will compute the distances be-
tween each test point and all reference set points. How-
ever, dimensionality reduction (Weinberger & Saul, 2008)
or clever structures, such as ball trees (Omohundro, 1989)
or hash tables (Gionis et al., 1999), can vastly reduce test
time. Table 3 (Left) shows the test time speed-up obtained
through kNN with an SNC compressed reference set versus
kNN with the full training set (after dimensionality reduc-
tion with LMNN). The table depicts the speed-up with the
standard exhaustive neighbor search (in black), and accel-
erated versions with ball-trees (in teal) and LSH (in purple),
each applied before and after SNC compression.

With a compression ratio ≥ 4% the error rates on all data
sets are lower or very close to those obtained with kNN
without compression. However, we highlight settings that

initial faces optimized
synthetic faces initial faces optimized

synthetic faces

Figure 3. YaleFaces before and after compression.

match or outperform the uncompressed kNN error in bold.
For the standard exhaustive implementation in Table 3,
speed-ups achieved by SNC generally exceed those ex-
pected at the given compression ratio (e.g>100× speed-up
at 1% compression). This may be due to favorable cache
effects from using a smaller reference set. This table shows
that SNC compression can lead to notable speed-ups even
when using ball-trees and hashing, demonstrating that SNC
can be used in conjunction both methods for even greater
speed-ups. The results with ball-trees are particularly im-
pressive, as all inputs have undergone dimensionality re-
duction, which is known to significantly improve ball-tree
speed-up itself (Weinberger & Saul, 2008).

Table 3 (Right) compares the number of distance compu-
tations required for kNN search with SNC at 4% com-
pression versus kNN search with ball-trees or LSH using
the full training set. The implementations of kNN, ball-
trees, and LSH may not be directly comparable, so we
use distance computations as a proxy for speed. SNC re-
quires fewer distance computations than either method on
all datasets except Adult (with LSH) and Forest.

In summary, our results give strong indication that 1.
SNC obtains drastic speed-ups during test-time while only
marginally increasing or, at times, decreasing kNN error
rates; and 2. it is an effective complement and competitor
to existing state-of-the-art strategies for speeding up kNN.

Compressed synthetic faces. Figure 3 visualizes syn-
thetic SNC reference vectors learned on the YaleFaces data.
Here, we preprocess the data using PCA and learn a com-
pressed data set using the first 100 principal components.
The figure shows (reconstructed) input faces that are ini-
tially subsampled to be in the compressed set (left columns)
and the resulting optimized (synthetic) faces after SNC. It
is interesting to observe that SNC is easily able to iden-
tify and emphasize distinguishing characteristics (e.g. mus-
taches) while ignoring noisy qualities (e.g. lighting).
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Table 3. Left: Speed-up of kNN testing through SNC compression without a data structure (in black) on top of ball-trees (in teal) and
LSH (in purple). Results where SNC matches or exceeds the accuracy of full kNN (up to statistical significance) are in bold. Right:
Speed-up of SNC at 4% compression versus ball-trees and LSH on the full dataset. Bold text indicates matched or exceeded accuracy.

SPEED-UP SNC 4% COMPARISON
COMPRESSION RATIO DISTANCE COMPS.

DATASET 1% 2% 4% 8% 16% BALL-TREES LSH
YALE-FACES − − − 28 17 3.6 19 11 3.5 12 7.3 3.2 6.5 4.2 2.8 7.1 21

ISOLET 76 23 13 47 13 13 26 6.8 13 14 3.7 13 7.0 2.0 13 13 14
LETTERS 143 9.3 100 73 6.3 61 34 3.6 34 16 2.0 17 7.6 1.1 8.4 3.3 23

ADULT 156 56 3.5 75 28 3.4 36 15 3.3 17 7.3 3.1 7.8 3.8 3.0 17 0.7
W8A 146 68 39 71 36 35 33 19 26 15 10 18 7.3 5.5 11 13 2.1

MNIST 136 54 84 66 29 75 32 16 57 15 8.4 37 7.1 3.6 17 11 8.5
FOREST 146 3.1 12 70 1.6 11 32 0.90 10 15 1.1 7.0 − − − 0.15 0.35

Label noise. An interesting observation from the results
in Figure 2 is that SNC compression at times improves the
kNN test error. We conjectured earlier that one explanation
may be that kNN with SNC can yield a smoother decision
boundary. This effect may be particularly beneficial in sce-
narios with label noise. We test this conjecture in Figure
4 (Right), where we examine the kNN error on the Letters
dataset under increasing random label corruption (for k=1
and k=3). The figure shows clearly that the kNN error in-
creases approximately linearly with label noise. SNC with
2%, 4%, 8% compression seems to smooth out mislabeled
inputs and yields a significantly more robust kNN classi-
fier. In contrast, CNN, FCNN and also subsampling (not
shown in the figure to reduce clutter) do not mitigate the
effect of label noise and at times tend to even amplify the
test error. It is worth noting out that, for this experiment,
CNN and FCNN were run to convergence and had signif-
icantly higher compression ratios than SNC’s fixed ratios.
For instance, at 0.32 label noise, CNN and FCNN both use
more than 65% of the data in their compressed set.

Visualized decision boundary. Figure 4 (Left) shows
the reference set (white circles) and decision rule (col-
ored shading) before and after SNC optimization. The data
set consists of USPS handwritten digits {0, 1, 2, 3, 4} after
projection onto 2D with LMNN (class membership is indi-
cated by color). The left plot shows the (randomly sub-
sampled) initialization of the reference set and the deci-
sion boundaries generated by this set. The SNC vectors
are learned with 4% compression ratio and different scal-
ing factors (γ2 = 1/2 and γ2 = 8, respectively). The deci-
sion regions for each class are notably erroneous in several
regions prior to reference set optimization. For both scale
factors γ2, optimizing the reference set with SNC improves
the decision boundary over the random sampling.

With a small γ2 (middle pane) the corresponding large
variance of the stochastic neighborhood encourages refer-
ence set vectors to produce results resembling a mixture
model (Bishop, 2006), where groups of compressed vec-
tors act as mixture component centers. The cluster cen-
ters are not at the expected locations (i.e. nested within a
dense set of vectors), but are pushed outwards to accommo-

date the (possibly too) small γ2. Larger values of γ2 (right
pane), converge to the decision boundaries between classes.
Indeed, for every compressed input close to the boundary
there are one or more representing the neighboring classes.

It is interesting to observe that by controlling γ2, SNC can
learn very different compressed sets. For naturally clus-
tered data sets, larger values of γ2 may be preferred, to
make reference vectors represent dense regions in the data
distribution. For data without such structure, smaller val-
ues of γ2 may result in lower errors, as SNC can model
the decision boundary more accurately. As γ2 is an im-
portant hyperparameter that changes the characteristics of
the compressed set, its initial value should be set via cross-
validation prior to potential further optimization.

5. Related Work
Research on speeding up kNN is almost as old as the kNN
rule itself. A big fraction concentrates on developing clever
data structures in order to reduce the number of test time
comparisons; examples include KD trees (Bentley, 1975),
cover- and ball-trees (Beygelzimer et al., 2006; Omohun-
dro, 1989) and hashing (Gionis et al., 1999). In this sec-
tion we review prior research that takes the complementary
approach of reducing the size of training data. We group
these approaches under three general categories: training
set consistent sampling, prototype generation, and proto-
type positioning. (A complete survey is Toussaint (2002).)

Training Set Consistent Sampling. The earliest work,
called Condensed Nearest Neighbors (CNN) (Hart, 1968),
starts by randomly selecting a single input and creating a
‘reference’ set, which it will use to classify the training
data. It adds misclassified training inputs sequentially to
this reference set until the full training set is correctly clas-
sified. There have been multiple extensions to CNN includ-
ing post-processing methods (Gates, 1972) and stricter se-
lection rules (Tomek, 1976; Devi & Murty, 2002). Recently
Fast CNN (Angiulli, 2005) makes CNN sub-quadratic in n
to train (as opposed to O(n3) naı̈vely for CNN), with em-
pirically better test generalization. All these methods retain
a set of inputs that are a subset of the original training set.



Stochastic Neighbor Compression

γ2 = 1/2

initial subsampling after convergence

γ2 = 8 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 

label noise

er
ro

r

SNC (2%)

3NN (with LMNN)
CNN (Hart, 1968)
FCNN (Angiulli, 2005)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 
1NN (with LMNN)

SNC (4%)
SNC (8%)

Figure 4. Left: The decision rule and SNC data set (white circles) learned from 2d USPS digits under varying γ2. Right: kNN test error
rates with various data set reduction methods on the Letters dataset under artificial label noise.

Prototype Generation. Prototype generation methods cre-
ate ‘prototypes’ for the training data, which allow the in-
clusion of new, artificial instances in the reduced data
set (Bandyopadhyay & Maulik, 2002). These generated in-
puts are typically found via clustering. Chang (1974) pro-
pose repeatedly merging nearest neighbors within a class
while the training error is unaffected. Mollineda et al.
(2002) merge clusters of inputs, until the LOO training er-
ror increases over a pre-determined threshold.

Prototype Positioning. There has also been work on
learning the positions of this prototype subset. Toussaint
(2002) describe using proximity graphs to generate a re-
duced set. Salzberg et al. (1995) determine the best set of
prototypes to exactly reproduce any decision boundary re-
quested. There has been a body of work on using learning
vector quantization (LVQ) (Kohonen, 1990b) for design-
ing kNN prototypes as well. In general, all of these meth-
ods consider local properties to optimize the reference set
whereas SNC incorporates global information from the en-
tire dataset through the stochastic neighborhoods.

Most similar to SNC are methods which optimize proto-
types to maximize Gaussian mixtures (which can be inter-
preted as a stochastic neighborhood). The stochastic neigh-
borhood, described in Section 2, smoothly models the prob-
ability that each prototype is the nearest neighbor of a given
training point using a Gaussian likelihood. The primary
differences between SNC and these methods in initial pro-
totype selection and how inputs are classified during test-
time. Decaestecker (1997) and Liu & Nakagawa (1999)
use a three-phase search for initial prototypes that involves
k-means and two different elimination rules. Bermejo &
Cabestany (1999) develop a variation of kNN called ‘soft’-
kNN that uses the R nearest prototypes to classify inputs.
They then maximize the probability of a correct prediction
using the R closest prototypes. In effect, if R = n their
objective is similar to ours. However, because soft-kNN
always considers all of the R prototypes to make a classi-
fication this setting cannot be sped up with ball trees, so
the authors cross validate the soft-kNN error over R. This

cross-validation does not consider the objective of reduc-
ing the size of R, which may result in a model that requires
significantly more computation than SNC.

6. Conclusions
We have introduced SNC, which is a simple and efficient
algorithm to compress the training set for kNN. Our ex-
periments indicate that SNC reference set almost always
provides comparable or lower test errors than the training
set with compression rates of 2-4%, leading to an order of
magnitude improvement in testing time.

One important direction for future work is extending SNC
to neighborhoods of higher cardinality (i.e. k= 3, 5). Tar-
low et al. (2013) provide a rigorous and efficient approach
for extending the stochastic neighborhood framework to
larger neighborhoods. Another consideration is that, as
nearest-neighbor search in non-Euclidean spaces becomes
more popular (e.g. covariance matrices (Chandrasekhar
et al., 2009)) it is valuable to consider if SNC can be ex-
tended to this setting. Another interesting direction is if
one can learn compressed reference inputs while simulta-
neously optimizing ball-tree structures.

In summary, we believe that SNC is a robust and highly
effective algorithm that is based on straight-forward gradi-
ent descent optimization. As it (a) seems to consistently
improve kNN speed, accuracy and robustness, and (b) can
be combined with existing algorithms to improve kNN, we
hope it will be useful to researchers and practitioners in
machine learning and its application domains.
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