
1 Introduction

This is a release of the code used to produce the results in [1], which has since been extended to a full
implementation of both Bayesian optimization and constrained Bayesian optimization. Bayesian optimization
is a relatively new method for optimizing expensive-to-evaluate blackbox functions, and has seen use in
machine learning in the context of hyperparameter optimization. For an excellent overview of Bayesian
optimization, see [3] and [4].

2 Bayesian Optimization

While the primary topic of [1] is Bayesian optimization for constrained problems, this toolbox is also a fully-
featured implementation of Bayesian optimization for unconstrained problems as well. Both the BO and
CBO code are called using the single bayesopt function, which has two input arguments and three ouput
arguments. Most of the GP inference is performed using the toolbox associated with the book, Gaussian
Processes for Machine Learning [2].

>> [min sample , min value , botrace] = bayesopt (F , opt) ;

In the following sections, we go over each of these arguments in detail.

2.1 Output Arguments

We first briefly discuss the output arguments, as they are relatively simple. The first output argument,
min sample is the parameter setting that minimized the objective function, and min value is the value of
the objective function at that point.

2.1.1 Trace

Bayesopt additionally returns a third output argument, a trace. This is a struct that contains three elements
when running standard Bayesian Optimization, and four when running with constraints:

botrace . samples ; % Matrix o f parameter va l u e s t e s t e d by bayesop t .
botrace . va lue s ; % Ob j e c t i v e va lue f o r each sample above
botrace . con va lue s ; % Constra in t f unc t i on va l u e s f o r samples above
botrace . t imes ; % Time to e va l ua t e o b j e c t i v e f unc t i on on each sample

botrace.samples is a list of all parameter values run by bayesopt. For example, if 100 iterations of
BO are run to optimize a function with 5 parameters, trace.samples will be a 100 × 5 matrix. Similarly,
trace.values are the objective function values observed by bayesopt when running the parameter settings
in trace.samples. Thus in this same scenario, trace.values would be a 100 × 1 vector. trace.times
simply contains the running time of each function evaluation (and therefore would also be a 100 × 1 vector
in our example). Finally, when running with constraints, trace.con values contains a vector of constraint
values for each parameter setting run. For example, if the 100 iterations above were run to optimize a function
subject to three constraints, trace.con values would be a 100× 3 matrix.

Importantly, this trace can be saved to a file either by hand or automatically using the save trace option.
This allows a run of bayesopt that was halted to be resumed, using the information in a trace file as initial
information. Alternatively, if you already have function evaluations for a number of experiments, you can
create a trace file manually to run bayesopt starting with these experiments.

2.2 Input Arguments

2.2.1 Objective function F

The first argument to bayesopt, F, is a MATLAB function handle. Broadly, the function handle takes a single
argument–a vector of parameters–and returns a single output–the objective function value. As a running
example, in [1], one of the simulation functions used was the simple function:

`(x) = sin(x1) + x2

1

After setting some options (discussed in the next section), this function could be optimized using bayesopt
as follows:

% Assume opt was s p e c i f i e d above
>> F = @(x) sin (x (1)) + x (2) ;
>> [min sample , min value , botrace] = bayesopt (F , opt) ;

It’s worth noting that while the function handle can take only one input (the parameter vector), the function
being bound has no such requirement. For example, we might add a constant period to the function above:

`(x) = sin(c · x1) + x2

We could then bind our function to use a pre-specified value of c as follows:

% Assume opt was s p e c i f i e d above
>> c = 2 . 5 ;
>> F = @(x) sin (c∗x (1)) + x (2) ;
>> [min sample , min value , botrace] = bayesopt (F , opt) ;

This is particularly useful when tuning hyperparameters of machine learning algorithms, as it allows us to pass
in datasets. For example, suppose we have a function to train an algorithm on a dataset (X train,Y train) and
return the validation error on a validation set (X val,Y val) using the hyperparams specified by hyper params:

function [v a l i d a t i o n e r r o r] = t r a i n (hyper params , X train , Y train , X val , Y val)

Then finding the best hyperparameters is as simple as creating a function handle that takes only the hyper
parameter values:

>> load data . mat ; % Get X train , Y train , X val , Y val
>> F = @(X) t r a i n (X, X train , Y train , X val , Y val) ;
>> [min sample , min value , botrace] = bayesopt (F , opt) ;

2.2.2 Options

The second input argument to bayesopt is the option struct opt that defines a number of important options–
some optional, others required–for bayesopt. For your convenience, many of the required arguments can be
given default options by using the “defaultopt” function:

>> opt = de f au l t op t ;

However, we discuss all the options in detail here.

Required Options. We first discuss all required arguments: those arguments that must have values to run
bayesopt.

opt.dims - Specifies the number of parameters your objective function takes. In our simulation example,
`(x) = sin(x1) + x2, this would be set to 2.

opt.mins - The minimum value of each parameter to search for. Together with opt.maxes, this defines a
hypercube that bayesopt should look for the optimum in.

opt.maxes - The maximum value of each parameter to search for.

opt.max iters - Number of iterations of Bayesian Optimization to perform. Defaults to 100.

opt.grid size - Number of candidate points to densely sample in the hypercube defined by opt.mins and
opt.maxes. These points are sampled from a Sobol sequence to cover the space as much as possi-
ble. Note that for higher dimensional problems, it may be better to use a smaller grid size, but set
opt.optimize ei to true, rather than use a very large grid size. Defaults to 20000.

opt.meanfunc - Which mean function (in GPML) to use for GP inference. Defaults to @meanconst.

2

opt.covfunc - Which covariance function (in GPML) to use for GP inference. Defaults to @covSEard.

opt.hyp - GP hyperparameters. Defaults to -1, which means to set automatically using MLE.

Note that while it may seem like there are a lot of these parameters, remember that many of these can
be set to the default values and will work reasonably well. For example, to optimize our simulation function
above, the following is all that is required:

>> F = @(x) sin (x (1)) + x (2) ;
>> opt = de f au l t op t ; % Sets max i ters , g r i d s i z e , meanfunc , covfunc , hyp
>> opt . dims = 2 ; % 2 Parameters
>> opt . mins = [0 0] ; % Min va lue o f x (1) and x (2)
>> opt . maxes = [6 6] ; % Max va lue o f x (1) and x (2)
>> opt . max i t e r s = 25 ; % Overwri te d e f a u l t −− won ’ t need 100 i t e r a t i o n s .
>> [min sample , min value , botrace] = bayesopt (F , opt) ;

Additional Options. In addition to the above, there are a number of options that are provided either for
convenience, or directly modify the optimization.

opt.optimize ei - If set to 1, this uses the derivative of Expected Improvement (EI) or Expected Constrained
Improvement (EIC) to, for each candidate point in the grid, find the nearest EI or EIC peak. Note
that, while this is very expensive, it does have several advantages. First, opt.grid size can (and
should) be set to a much smaller value, as a dense sampling is no longer as necessary. Second, using
this option is highly recommended for higher dimensional search problems, as optimizing EI or EIC
directly is more efficient than sampling a high dimensional space densely.

• Currently, only the covSEard (Squared Exponential covariance with automatic relevance
determination) covariance is supported with this option. Support for other covariances
will be added in a later release.

• However, if you so choose, it is easy to extend bayesopt.m to support other covariances. Simply write
a matlab function that returns the derivative of the covariance k(x, z) with respect to a single z and
pass it in as opt.cov grad f

opt.parallel jobs - Setting this option to a value greater than 1 will use the method of [3] to run multiple
experiments in parallel. To run experiments in parallel, bayesopt makes use of the builtin parfor
construct in MATLAB. as a result, before running with this option, one of the following two lines
should be run (to use 4 cores in this example):

>> parpool 4 ; % Matlab 2014b and beyond
>> matlabpool 4 ; % Matlab b e f o r e 2014b

Notes. There are a few notes about the above two options specifically. First, they are currently mutually
exclusive, as combining the two is very expensive. Second, while the parallel jobs option, requires
a matlabpool, the optimize ei option also benefits greatly from this, as it will then optimize EI on
each candidate in parallel.

opt.ei burnin - Specifies a number of iterations to do without optimizing EI before optimizing EI. Because
the optimization of EI and EIC are very expensive, this can speed up optimization, as optimizing EI
may not be worth it for a few iterations.

opt.parallel mc iters - Number of MCMC samples to obtain for the parallelization strategy of [2]. The
higher this is set, the better the parallel experiments will be, but the more expensive choosing them
will be.

opt.save trace - Set to 1 to automatically save a trace (the struct returned by bayesopt) to a file. This
trace is saved at the end of each iteration of BO, and can be used to resume a run of BO.

3

opt.trace file - a string containing a file name to save the trace to if save trace is set to 1.

opt.resume trace - Rather than starting a new bayesopt run from scratch, loads the trace from opt.trace file
and uses that information for initialization.

opt.grid - Used to specify a custom grid of points to optimize over. This is useful if you want to optimize
your function over a discrete set of candidates, rather than an entire hypercube. Note that using this
in conjunction with optimize ei will cause the final parameter setting to not be an element of this
grid.

opt.do cbo - Perform constrained optimization if set to 1 (default is 0). Note that all of the above options
function for constrained BO. In the specific case of the optimize ei option, EIC is optimized starting
from each candidate rather than EI.

opt.lt const - Row vector of constraint constants for each constraint function. That is, the optimization will
be subject to the constraint that the jth constraint function be less than or equal to opt.lt const(j).

3 Constrained Bayesian Optimization

To use bayesopt to perform constrained optimization requires two simple modifications. First, the option
opt.do cbo must be set to 1. Second, the constraint constant must be set in opt.lt const. Finally, the
function handle F must return two arguments instead of one. The first argument is still the objective function
value as normal. The second output argument is a row vector of constraint function values, one for each
constraint function. For example, to solve the following simple simulation constrained problem:

min
x1,x2

sin(x1) + x2 subject to sin(x1) sin(x2) ≤ −0.95

One could write the following function:

function [L ,C] = sample con func (x)
L = sin (x (1)) + x (2) ;
C = sin (x (1))∗ sin (x (2)) ;

end

And then run the following:

>> F = @(x) sample con func (x) ;
>> opt = de f au l t op t ; % Sets max i ters , g r i d s i z e , meanfunc , covfunc , hyp
>> opt . dims = 2 ; % 2 Parameters
>> opt . mins = [0 0] ; % Min va lue o f x (1) and x (2)
>> opt . maxes = [6 6] ; % Max va lue o f x (1) and x (2)
>> opt . max i t e r s = 25 ; % Overwri te d e f a u l t −− won ’ t need 100 i t e r a t i o n s .
>> % Constrained BO op t ions .
>> opt . do cbo = 1 ; % Do cons t ra ined op t im i za t i on
>> opt . l t c o n s t = −0.95; % Constra in t cons tant .
>> [min sample , min value , botrace] = bayesopt (F , opt) ;

Running with multiple inequality constraints is also straightforward. To optimize the same simulation prob-
lem with one additional constraint:

min
x1,x2

sin(x1) + x2

s.t. sin(x1) sin(x2) ≤ −0.95 and x2
2 ≤ 10

You modify the function to return both constraint function values:

4

function [L ,C] = sample con func2 (x)
L = sin (x (1)) + x (2) ;
C1 = sin (x (1))∗ sin (x (2)) ;
C2 = x (2) ˆ 2 ;
C = [C1 C2] ;

end

And then specify both constraint constants:

>> F = @(x) sample con func2 (x) ;
>> opt = de f au l t op t ; % Sets max i ters , g r i d s i z e , meanfunc , covfunc , hyp
>> opt . dims = 2 ; % 2 Parameters
>> opt . mins = [0 0] ; % Min va lue o f x (1) and x (2)
>> opt . maxes = [6 6] ; % Max va lue o f x (1) and x (2)
>> opt . max i t e r s = 25 ; % Overwri te d e f a u l t −− won ’ t need 100 i t e r a t i o n s .
>> % Constrained BO op t ions .
>> opt . do cbo = 1 ; % Do cons t ra ined op t im i za t i on
>> opt . l t c o n s t = [−0.95 1 0] ; % Constra in t cons tant .
>> [min sample , min value , botrace] = bayesopt (F , opt) ;

4 References

1. Gardner, J., Kusner, M., Weinberger, K., & Cunningham, J. (2014). Bayesian optimization with
inequality constraints. In Proceedings of The 31st International Conference on Machine Learning (pg.
937-945).

2. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.

3. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems (pg. 2951-2959).

4. Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599.

5

