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Abstract

Accurately measuring the similarity between text documents lies at the core of1

many real world applications of machine learning. These include web-search2

ranking, document recommendation, multi-lingual document matching, and ar-3

ticle categorization. Recently, a new document metric, the word mover’s distance4

(WMD), has been proposed with unprecedented results on kNN-based document5

classification. The WMD elevates high quality word embeddings to document6

metrics by formulating the distance between two documents as an optimal trans-7

port problem between the embedded words. However, the document distances8

are entirely unsupervised and lack a mechanism to incorporate supervision when9

available. In this paper we propose an efficient technique to learn a supervised10

metric, which we call the Supervised WMD (S-WMD) metric. Our algorithm11

learns document distances that measure the underlying semantic differences be-12

tween documents by leveraging semantic differences between individual words13

discovered during supervised training. This is achieved with an linear transforma-14

tion of the underlying word embedding space and tailored word-specific weights,15

learned to minimize the stochastic leave-one-out nearest neighbor classification16

error on a per-document level. We evaluate our metric on eight real-world text17

classification tasks on which S-WMD consistently outperforms almost all of our18

26 competitive baselines.19

1 Introduction20

Document distances are a key component of many text retrieval tasks such as web-search ranking21

[24], book recommendation [16], and news categorization [25]. Because of the variety of poten-22

tial applications, there has been a wealth of work towards developing accurate document distances23

[2, 4, 11, 27]. In large part, prior work has focused on extracting meaningful document repre-24

sentations, starting with the classical bag of words (BOW) and term frequency-inverse document25

frequency (TF-IDF) representations [30]. These sparse, high-dimensional representations are fre-26

quently nearly orthogonal [17] and a pair of similar documents may therefore have the nearly the27

same distance as a pair that are very different. It is possible to design more meaningful repre-28

sentations through eigendecomposing the BOW space with Latent Semantic Indexing (LSI) [11],29

or learning a probabilistic clustering of BOW vectors with Latent Dirichlet Allocation (LDA) [2].30

Other work generalizes LDA [27] or uses denoising autoencoders [4] to learn a suitable document31

representation.32

Recently, Kusner et al. [19] proposed the Word Mover’s Distance (WMD), a new distance for text33

documents that leverages word2vec term embeddings [22]. Word2vec constitutes a breakthrough34

in learning word embeddings and can be trained from billions of words. The WMD uses such35

high-quality word representations to define document distances. It defines the distances between36

two documents as the optimal transport cost of moving all words from one document to another37

within the word embedding space. This approach was shown to lead to state-of-the-art error rates38

in k-nearest neighbor (kNN) document classification. Importantly, however, these prior works are39
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entirely unsupervised and not learned explicitly for any particular task. For example, a set of text40

documents could be classified by topic or by author, which would lead to very different definitions41

of dissimilarity. Lately, there has been a vast amount of work on metric learning [10, 15, 37, 38],42

most of which focuses on learning a generalized linear Euclidean metric. Most of these methods43

scale quadratically with the input dimensionality, and can only be applied to high-dimensional text44

documents after dimensionality reduction techniques such as PCA [37].45

In this paper we propose an algorithm for learning a metric to improve the word mover’s distance.46

WMD stands out from prior work in that it computes distances between documents without ever47

learning a new document representation. Instead, it leverages low-dimensional word representa-48

tions, for example word2vec, to compute distances. This allows us to transform the word embed-49

ding instead of the documents, and remain in a low-dimensional space throughout. At the same50

time we propose to learn word-specific weights, to emphasize the importance of certain words for51

distinguishing the document class.52

At first glance, incorporating supervision into the WMD appears computationally prohibitive, as53

each individual WMD computation scales cubically in the size of the documents. However, we de-54

vise an efficient technique that exploits a relaxed version of the underlying optimal transport prob-55

lem, called the Sinkhorn distance [6]. This, combined with a probabilistic filtering of the training56

set, reduces the computation time significantly.57

Our metric learning algorithm, Supervised Word Mover’s Distance (S-WMD), directly minimizes a58

stochastic version of the leave-one-out classification error under the WMD metric. Different from59

classic metric learning, we learn a linear transformation of the word representations while also learn-60

ing re-weighted word frequencies. These transformations are learned to make the WMD distances61

match the semantic meaning of similarity encoded in the labels. We show across 8 datasets and 2662

baseline methods the superiority of our method.63

2 Background64

Here we describe the initial word embedding technique we use (word2vec) and the recently intro-65

duced word mover’s distance. We then detail the general setting of linear metric learning and give66

specific details on NCA that we will make use of in the model.67

word2vec is a new technique for learning a word embedding over billions of words and was intro-68

duced by Mikolov et al. [22]. Each word in the training corpus is associated with an initial word69

vector, which is then optimized so that if two words w1 and w2 frequently occur together they have70

high conditional probability p(w2|w1). This probability is the hierarchical softmax of the word71

vectors vw1 and vw2 [22], an easily-computed quantity which allows a simplified neural language72

model (the word2vec model) to be trained efficiently on desktop computers. Training an embedding73

over billions of words allows word2vec to capture surprisingly accurate word relationships [23].74

Word embeddings can learn hundreds of millions of parameters and are typically by design unsu-75

pervised, allowing them to be trained on large unlabeled text corpora ahead of time. In this paper76

we will use word2vec, although in principle any initial word embedding can be used [21, 23, 5].77

Word Mover’s Distance. Leveraging the compelling word vector relationships of the word2vec78

embedding, Kusner et al. [19] introduced the word mover’s distance (WMD) as a distance between79

text documents. At a high level, the WMD is the minimum distance required to move the words from80

one document to another. We assume that we are given a word2vec embedding matrix X ∈Rd×n81

for a vocabulary of n words. Let xi ∈Rd be the representation of the ith word, as defined by this82

embedding. Additionally, let da,db be the n-dimensional normalized bag-of-words (BOW) vectors83

for two documents, where dai is the number of times word i occurs in da (normalized over all words84

in da). The WMD introduces an auxiliary ‘transport’ matrix T ∈ Rn×n, such that Tij describes85

how much of dai should be transported to dbj . Formally, the WMD learns T to minimize the objective86

function87

D(xi,xj) = min
T≥0

n∑
i,j=1

Tij‖xi − xj‖2, subject to,
n∑
j=1

Tij = dai ,

n∑
i=1

Tij = dbj ∀i, j. (1)

In this way, documents that share many words (or even related ones) should have smaller distances88

than documents with very dissimilar words. It was noted in Kusner et al. [19] that the WMD is89

a special case of the Earth Mover’s Distance (EMD) [29], also known more generally as the 1-90

Wasserstein distance [20]. The authors also introduce the word centroid distance (WCD), which91
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uses a fast approximation first described by Rubner et al. [29]: ‖Xd − Xd′‖2. It can be shown92

that the WCD always lower bounds the WMD. Intuitively the WCD represents each document by93

the weighted average word vector, where the weights are the normalized BOW counts. The time94

complexity of solving the WMD optimization problem is O(p3 log p) [26], where p is the maximum95

number of unique words in either d or d′. The WCD scales asymptotically by O(dp).96

Regularized Transport Problem. To alleviate the cubic time complexity of the WMD, Cuturi97

& Doucet [8] formulated a smoothed version of the underlying transport problem by adding an98

entropy regularizer to the transport objective. This makes the objective function strictly convex,99

and efficient algorithms can be adopted to solve it. In particular, given a transport matrix T, let100

h(T) = −
∑n
i,j=1 Tij log(Tij) be the entropy of T. For any λ > 0, the regularized (primal)101

transport problem is defined as102

min
T≥0

n∑
i,j=1

Tij‖xi − xj‖2 −
1
λ
h(T) subject to,

n∑
j=1

Tij = dai ,

n∑
i=1

Tij = dbj ∀i, j. (2)

103
Linear Metric Learning. Assume that we have access to a training set {x1, . . . ,xn} ⊂ Rd, ar-104

ranged as columns in matrix X ∈ Rd×n, and corresponding labels {y1, . . . , yn} ⊆ Yn, where Y105

contains some finite number of classes C = |Y|. Linear metric learning learns a matrix A∈Rr×d,106

where r≤ d, and defines the generalized Euclidean distance between two documents xi and xj as107

dA(xi,xj) = ‖A(xi−xj)‖2. Popular linear metric learning algorithms are NCA [15], LMNN [37],108

and ITML [10] amongst others [38]. All of these methods learn a matrix A to minimize a loss109

function that is often an approximation of the leave-one-out (LOO) classification error of the kNN110

classifier.111

Neighborhood Components Analysis (NCA) was introduced by Goldberger et al. [15] to learn a112

generalized Euclidean metric. The authors address the problem that the leave-one-out kNN error is113

non-continuous by defining a stochastic neighborhood process. An input xi is assigned input xj as114

its nearest neighbor with probability115

pij =
exp(−d2

A(xi,xj))∑
k 6=i exp (−d2

A(xi,xk))
, (3)

where we define pii = 0. NCA optimizes this metric explicitly for kNN. Under this rule, an input116

xi with label yi is classified correctly if its nearest neighbor is any xj 6= xi from the same class117

(yj=yi). The probability of this event can be stated as118

pi =
∑

j 6=i:yj=yi

pij . (4)

NCA learns A by maximizing the expected LOO accuracy
∑
i pi, or equivalently by minimizing119

−
∑
i log(pi), the KL-divergence from a perfect classification distribution (pi = 1 for all xi).120

3 Learning a Word Embedding Metric121

In this section we propose a method for learning a document distance, by way of learning a gener-122

alized Euclidean metric within the word embedding space. We will refer to the learned document123

distance metric as the Supervised Word Mover’s Distance (S-WMD). To learn such a metric we as-124

sume we have a training dataset consisting of m documents {d1, . . . ,dm} ⊂ Σn, where Σn is the125

(n−1)-dimensional simplex (thus each document is represented as a histogram over the words in the126

vocabulary, of size n). For each document we have a label {y1, . . . , ym} ⊆ Ym, out of a possible127

C classes. Additionally, we are given a word embedding matrix X ∈ Rd×n (e.g., the word2vec128

embedding) which defines a d-dimensional word vector for each of the words in the vocabulary.129

Supervised WMD. As described in the previous section, it is possible to define a distance between130

any two documents da and db as the minimum cumulative word distance of moving da to db in131

word embedding space, as is done in the WMD, eq. (1). Given document labels, we would like to132

learn this distance so that documents with the same labels are close, and otherwise are far apart, via a133

linear transformation xi→Axi. We also introduce a histogram importance vector w that re-weights134

the histogram values to reflect the importance of words for distinguishing the classes:135

d̃a = (w ◦ da)/(w>da), (5)

where “◦” denotes the Hadamard product.136
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After applying the vector w and the linear mapping A, the WMD distance between documents da137

and db becomes138

DA,w(da,db) , min
T≥0

n∑
i,j=1

Tij‖A(xi − xj)‖22 s.t.
n∑
j=1

Tij= d̃ai and
n∑
i=1

Tij= d̃bj ∀i, j. (6)

Loss Function. Our goal is to learn the matrix A and vector w to make the distance DA,w reflect139

the semantic definition of similarity encoded in the labeled data. Similar to prior work on metric140

learning [15, 10, 37] we achieve this by minimizing the kNN LOO error with the distance DA,w141

in the document space. As the LOO error is non-differentiable, we use the stochastic neighborhood142

relaxation proposed by Hinton & Roweis [18], which is also used for NCA.143

Similar to prior work, we use the squared Euclidean word distance in Eq. (6) as opposed to the144

non-squared distance in WMD, Eq. (1). We use the KL-divergence loss proposed in NCA with (3)145

and (4) and obtain146

`(A,w) = −
m∑
a=1

log

 m∑
b:yb=ya

exp(−DA,w(da,db))∑
k 6=a exp (−DA,w(da,dk))

 . (7)

Gradient. Note that the loss function `(A,w) contains the nested linear program defined in (6). We147

can compute the gradient with respect to A and w as follows,148

∂

∂(A,w)
`(A,w) =

m∑
a=1

∑
b6=a

pab
pa

(δab − pa)
∂

∂(A,w)
DA,w(da,db), (8)

where δab=1 if and only if ya=yb, and δab=0 otherwise. The remaining gradient can be computed149

based on prior work by Bertsimas & Tsitsiklis [1], Cuturi & Avis [7] and Cuturi & Doucet [8], who150

consider the differentiability of transportation problems.151

Gradient w.r.t. A. The authors show that because the optimization in eq. (6) is a linear program,152

the gradient of DA,w(da,db) with respect to A is153

∂

∂A
DA,w(da,db) = 2A

n∑
i,j=1

Tab
ij (xi − xj)(xi − xj)>, (9)

where Tab is the optimizer of (6), so long as it is unique. Even if Tab is not unique, they show that154

the above expression (9) is in the sub-differential ∂DA(da,db).155

Gradient w.r.t. w. To obtain the gradient of the WMD distance with respect to w, we need the156

optimal solution to the dual transport problem:157

D∗A,w(da,db) , max
(α,β)

α>d̃a + β>d̃b; s.t. αi + βj ≤ ‖A(xi − xj)‖22 ∀i, j. (10)

Cuturi & Doucet [8] points out that any optimal dual solution α∗ and β∗ to (10) are subgradients of158

the primal WMD with respect to d̃a and d̃b respectively. Given that both d̃a and d̃b are functions of159

w, we have that160

∂

∂w
DA,w(da,db)=

∂DA,w

∂d̃a
∂d̃a

∂w
+
∂DA,w

∂d̃b
∂d̃b

∂w
=

α◦da−(α>d̃a)da

w>da
+

β◦db−(β>d̃b)db

w>db
. (11)

3.1 Fast gradient computation161

The above subgradient descent procedure is prohibitively slow in all but the most simple cases.162

Indeed, at each iteration we have to solve the dual transport problem for each pair of documents,163

which has a time complexity of O(p3 log p). Motivated by the recent works on fast Wasserstein164

distance computation [6, 8, 12], we propose to relax the modified linear program in eq. (6) by165

subtracting an entropy regularization term, as proposed in eq. (2).166

This relaxed optimization problem can be shown to be strongly convex, thus admitting a unique167

solution T∗λ. More importantly, [6] gives an efficient algorithm to solve for both the primal variable168
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T∗λ and the dual variables (α∗λ,β
∗
λ) using a clever matrix-scaling algorithm. Using this technique,169

we define the matrix Kij = exp(−λ‖xi−xj‖2) and alternately solve for the scaling vectors u,v to170

a fixed-point via the mapping (u,v) 7→ (da/(Kv),db/(K>u)). This yields the relaxed transport171

T∗λ = diag(u)K diag(v)

This algorithm can be shown to have empirical time complexity O(p2) [6], which is significantly172

faster than solving the WMD problem exactly. Once we have solved u and v, the optimal dual173

variables may also be obtained by α∗λ = log(u)
λ − log(u)>1

p 1 and β∗λ = log(v)
λ − log(v)>1

p 1, where 1174

is the p-dimensional all ones vector.175

3.2 Optimization176

Alongside the fast gradient computation process introduced above, we can further speed up the177

training with a clever initialization and batch gradient descent.178

Initialization. The loss function in eq. (7) is non-convex and is thus highly dependent on the initial179

setting of A and w. A good initialization also drastically reduces the number of gradient steps180

required. For w, we simply initialize all its entries to 1, i.e., all words are assigned with the same181

weights at the beginning. For A, we propose to learn an initial projection within the word centroid182

distance (WCD), defined as D′(da,db) = ‖Xda − Xdb‖2, described in Section 2. The WCD183

should be a reasonble approximation to the WMD as Kusner et al. [19] point out that the WCD is a184

lower bound on the WMD, as follows,185

n∑
i,j=1

Tab
ij ‖A(xi − xj)‖2 ≥ ‖A(Xda −Xdb)‖2 = ‖A(ca − cb)‖2

where c and c′ are the WCD centroid vectors for documents d and d′. This is to say that we can186

construct the WCD dataset: {c1, . . . , cm} ⊂ Rd and apply NCA in the usual way, as described in187

Section 2. This is equivalent to running NCA in word embedding space using the WCD distance188

between documents. We call this learned word distance Supervised Word Centroid Distance (S-189

WCD). As the WCD is an approximation of the WMD metric, the learned metric A is a good190

initialization for the S-WMD optimization.191

Stochastic Gradient Descent. Once the initial matrix A is obtained, we minimize the loss `(A,w)192

in (7) with minibatch stochastic gradient descent. At each iteration, instead of optimizing over the193

full training set, we randomly pick a batch of documents B from the training set, and compute the194

gradient for these documents. We can further speed up training by observing that the vast majority195

of NCA probabilities pab are close to zero. This is because most documents are far away from any196

given document. Thus, for a document da we can use the WCD to get a cheap neighbor ordering197

and only compute the NCA probabilities for the closest set of documents Na, based on the WCD.198

In particular, the gradient is computed as follows,199

gA,w =
∑
a∈B

∑
b∈Na

(pab/pa)(δab − pa)
∂

∂(A,w)
D(A,w)(da,db), (12)

where again Na is the set of nearest neighbors of document a. With the gradient, we update A and200

w with learning rates ηA and ηw, respectively. Algorithm 1 summarizes S-WMD in pseudo code.201

Complexity. The empirical time complexity of solving the dual transport problem scales quadrati-202

cally with p [26]. Therefore, the complexity of our algorithm is O(i|B||N |[p2 + d2p+ d2r]), where203

i denotes the number of batch gradient descent iterations, p the largest number of unique words in204

a document, |B| is the batch size, and |N | is the nearest neighbor set. This is because computing205

eq. (12) requires O(p2) to obtain T∗ij , α∗ and β∗, while constructing the gradient from eqs. (9) and206

(11) takes O(d2p) time. Finally, multiplying the sum by 2A requires d2r time. The approximated207

gradient eq. (12) requires this computation to be repeated |B||N | times. In our experiments, we set208

|B| = 32 and |N | = 200, and computing the gradient at each iteration can be done in seconds.209

4 Results210
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Figure 1: The t-SNE plots of WMD and S-WMD on all datasets.

Algorithm 1 S-WMD
1: Input: word embedding: X,
2: dataset: {(d1, y1), . . . , (dm, ym)}
3: ca = Xda, ∀a∈{1, . . . ,m}
4: A = NCA((c1, y1), . . . , (cm, ym))
5: w = 1
6: while loop until convergence do
7: Select B randomly in {1, . . . ,m}
8: Compute gradient g from Eq. (12)
9: A← A− ηAgA

10: w← w − ηwgw

11: end while

We evaluate S-WMD on 8 different document cor-211

pora and compare the kNN error with unsupervised212

WCD, WMD, and 6 document representations. In213

addition, all 6 document representation baselines are214

used with and without 3 leading supervised met-215

ric learning algorithms—resulting in an overall to-216

tal of 26 competitive baselines. Our code is imple-217

mented in Matlab and is freely available at http:218

//anonymized.219

Datasets and Baselines. We evaluate all ap-220

proaches on 8 document datasets in the settings of221

news categorization, sentiment analysis, and prod-222

uct identification, among others. Table 1 describes the classification tasks as well as the size and223

number of classes C of each of the datasets. We evaluate against the following document represen-224

tation/distance methods: 1. bag-of-words (BOW): a count of the number of word occurrences in a225

document, the length of the vector is the number of unique words in the corpus; 2. term frequency-226

inverse document frequency (TF-IDF): the BOW vector normalized by the document frequency of227

each word across the corpus; 3. Okapi BM25 [28]: a TF-IDF-like ranking function, first used in228

search engines; 4. Latent Semantic Indexing (LSI) [11]: projects the BOW vectors onto an orthog-229

onal basis via singular value decomposition; 5. Latent Dirichlet Allocation (LDA) [2]: a generative230

probabilistic method that models documents as mixtures of word ‘topics’. We train LDA transduc-231

tively (i.e., on the combined collection of training & testing words) and use the topic probabilities as232

the document representation1; 6. Marginalized Stacked Denoising Autoencoders (mSDA) [4]: a fast233

method for training stacked denoising autoencoders, which have state-of-the-art error rates on sen-234

timent analysis tasks [14]. For datasets larger than RECIPE we use either a high-dimensional variant235

of mSDA or take 20% of the features that occur most often, whichever has better performance.; 7.236

Word Centroid Distance (WCD) [19]: described in [19] as a fast approximation to the WMD; 8.237

Word Movers Distance (WMD) [19]: a method that calculates document distance as the minimum238

distance to move word embeddings from one document to another by way of the Earth Mover’s239

Distance optimal transport program. We also compare with the Supervised Word Centroid Distance240

(S-WCD) and the initialization of S-WMD (S-WMD init.), described in Section 3. For methods241

that propose a document representation (as opposed to a distance), we use the Euclidean distance242

between these vector representations for visualization and kNN classification. For the supervised243

metric learning results we first reduce the dimensionality of each representation to 200 dimensions244

(if necessary) with PCA and then run either NCA, ITML, or LMNN on the projected data. We tune245

all free hyperparameters in all compared methods (including S-WMD) with Bayesian optimization246

(BO), using the implementation of Gardner et al. [13]2.247

t-SNE visualization. Figure 1 shows a 2D embedding of the test split of each dataset by WMD248

and S-WMD using t-Stochastic Neighbor Embedding (t-SNE) [34]. The quality of a distance can249

be visualized by how clustered points in the same class are. Using this metric, S-WMD noticeably250

improves upon WMD, particularly on BBCSPORT, RECIPE, OHSUMED, CLASSIC, and REUTER.251

1We use the Matlab Topic Modeling Toolbox [32].
2http://tinyurl.com/bayesopt

6

http://anonymized
http://anonymized
http://anonymized
http://tinyurl.com/bayesopt


Table 1: The document datasets (and their descriptions) used for visualization and evaluation.
BOW avg

name description C n ne dim. words
BBCSPORT BBC sports articles labeled by sport 5 517 220 13243 117

TWITTER tweets categorized by sentiment [31] 3 2176 932 6344 9.9
RECIPE recipe procedures labeled by origin 15 3059 1311 5708 48.5

OHSUMED medical abstracts (class subsampled) 10 3999 5153 31789 59.2
CLASSIC academic papers labeled by publisher 4 4965 2128 24277 38.6

REUTERS news dataset (train/test split [3]) 8 5485 2189 22425 37.1
AMAZON reviews labeled by product 4 5600 2400 42063 45.0
20NEWS canonical news article dataset [3] 20 11293 7528 29671 72

kNN classification. We show the kNN test error of all document representation and distance meth-252

ods in Table 3. For datasets that do not have a predefined train/test split: BBCSPORT, TWITTER,253

RECIPE, CLASSIC, and AMAZON we average results over five 70/30 train/test splits and report stan-254

dard errors. For each dataset we highlight the best results in bold (and those whose standard error255

overlaps the mean of the best result). On the right we also show the average error across datasets,256

relative to unsupervised BOW (bold indicates the best method). We highlight our new results in257

red (S-WMD init.) and blue (S-WMD). Despite the very large number of competitive baselines, S-258

WMD achieves the lowest kNN test error on 5/8 datasets, with the exception of BBCSPORT, CLASSIC259

and AMAZON. On these datasets it achieves the 4rd lowest on BBCSPORT and CLASSIC, and tied at260

2nd on 20NEWS. On average across all datasets it outperforms all other 28 methods. A surprising261

observation is that S-WMD right after initialization (S-WMD init.) performs competitively well.262

However, as training S-WMD is quite fast, as described in Table 2 it is often well worth the training263

time.264

Table 2: The time to compute each distance on the
training set. Note that computing S-WMD pro-
duces both S-WCD and its initialization for free.

FULL TRAINING TIMES
DATASET METRICS

S-WCD/S-WMD INIT. S-WMD
BBCSPORT 1m 25s 4m 56s
TWITTER 28m 59s 7m 53s

RECIPE 23m 21s 23m 58s
OHSUMED 46m 18s 29m 12s
CLASSIC 1h 18m 36m 22s
REUTERS 2h 7m 34m 56s
AMAZON 2h 15m 20m 10s
20NEWS 14m 42s 1h 55m

For unsupervised baselines, on datasets BBC-265

SPORT and OHSUMED, where the previous266

state-of-the-art WMD was beaten by LSI, S-267

WMD reduces the error of LSI relatively by268

53% and 19%, respectively. On average, rel-269

ative to BOW, S-WMD performs 17% and 29%270

better relative to the second and third place un-271

supervised methods, WMD and LSI. In general,272

supervision seems to help all methods on aver-273

age, save mSDA and LDA. Across all baselines274

LMNN performs the best with an average error275

of 0.55 relative to BOW, followed closely by276

NCA with 0.56 relative error. One reason why277

NCA with a TF-IDF document representation278

may be performing better than S-WMD could be because of the long document lengths in BBC-279

SPORT and OHSUMED. Having denser BOW vectors may improve the inverse document frequency280

weights, which in turn may be a good initialization for NCA to further fine-tune. On datasets with281

smaller documents such as TWITTER, REUTERS, and CLASSIC, S-WMD outperforms NCA with282

TF-IDF relatively by 9.2%, 37%, and 42%, respectively. On CLASSIC WMD outperforms S-WMD283

possibly because of a poor initialization and that S-WMD uses the squared Euclidean distance be-284

tween word vectors, which may be suboptimal for this dataset. This however, does not occur for any285

other dataset.286

Training time. Table 2 shows the training times on each dataset for the three supervised distances287

introduced in the paper. We use 25 iterations of Bayesian optimization to select r for S-WCD (for288

20NEWS to save time we fix r=d/2 beforehand). Computing the S-WMD initialization is free once289

S-WCD is computed. Relative to the initialization S-WMD is surprisingly fast. This is due to the290

batch gradient descent and WCD nearest neighbor approximations introduced in Section 3.2. We291

note that these times are comparable or even faster than the time it takes to train a linear metric on292

the baseline methods after PCA.293

5 Related Work294

Metric learning is a vast field that includes both supervised and unsupervised techniques (see Yang295

& Jin [38] for a large survey). Alongside NCA [15], described in Section 2, there are a number296

of popular methods for generalized Euclidean metric learning. Large Margin Nearest Neighbors297
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Table 3: The kNN test error for all datasets and distances.
DATASET BBCSPORT TWITTER RECIPE OHSUMED CLASSIC REUTERS AMAZON 20NEWS AVERAGE-RANK

UNSUPERVISED
BOW 20.6± 1.2 43.6± 0.4 59.3± 1.0 61.1 36.0± 0.5 13.9 28.5± 0.5 57.8 26.1

TF-IDF 21.5± 2.8 33.2± 0.9 53.4± 1.0 62.7 35.0± 1.8 29.1 41.5± 1.2 54.4 25.0
OKAPI BM25 [28] 16.9± 1.5 42.7± 7.8 53.4± 1.9 66.2 40.6± 2.7 32.8 58.8± 2.6 55.9 26.1

LSI [11] 4.3± 0.6 31.7± 0.7 45.4± 0.5 44.2 6.7± 0.4 6.3 9.3± 0.4 28.9 12.0
LDA [2] 6.4± 0.7 33.8± 0.3 51.3± 0.6 51.0 5.0± 0.3 6.9 11.8± 0.6 31.5 16.6

MSDA [4] 8.4± 0.8 32.3± 0.7 48.0± 1.4 49.3 6.9± 0.4 8.1 17.1± 0.4 39.5 18.0
ITML [10]

BOW 7.4± 1.4 32.0± 0.4 63.1± 0.9 70.1 7.5± 0.5 7.3 20.5± 2.1 60.6 23.0
TF-IDF 1.8± 0.2 31.1± 0.3 51.0± 1.4 55.1 9.9± 1.0 6.6 11.1± 1.9 45.3 14.8

OKAPI BM25 [28] 3.7± 0.5 31.9± 0.3 53.8± 1.8 77.0 18.3± 4.5 20.7 11.4± 2.9 81.5 21.5
LSI [11] 5.0± 0.7 32.3± 0.4 55.7± 0.8 54.7 5.5± 0.7 6.9 10.6± 2.2 39.6 17.6
LDA [2] 6.5± 0.7 33.9± 0.9 59.3± 0.8 59.6 6.6± 0.5 9.2 15.7± 2.0 87.8 22.5

MSDA [4] 25.5± 9.4 43.7± 7.4 54.5± 1.3 61.8 14.9± 2.2 5.9 37.4± 4.0 47.7 23.9
LMNN [37]

BOW 2.4± 0.4 31.8± 0.3 48.4± 0.4 49.1 4.7± 0.3 3.9 10.7± 0.3 40.7 11.5
TF-IDF 4.0± 0.6 30.8± 0.3 43.7± 0.3 40.0 4.9± 0.3 5.8 6.8± 0.3 28.1 7.8

OKAPI BM25 [28] 1.9± 0.7 30.5± 0.4 41.7± 0.7 59.4 19.0± 9.3 9.2 6.9± 0.2 57.4 14.4
LSI [11] 2.4± 0.5 31.6± 0.2 44.8± 0.4 40.8 3.0± 0.1 3.2 6.6± 0.2 25.1 5.1
LDA [2] 4.5± 0.4 31.9± 0.6 51.4± 0.4 49.9 4.9± 0.4 5.6 12.1± 0.6 32.0 14.6

MSDA [4] 22.7± 10.0 50.3± 8.6 46.3± 1.2 41.6 11.1± 1.9 5.3 24.0± 3.6 27.1 17.3
NCA [15]

BOW 9.6± 0.6 31.1± 0.5 55.2± 0.6 57.4 4.0± 0.1 6.2 16.8± 0.3 46.4 17.5
TF-IDF 0.6± 0.3 30.6± 0.5 41.4± 0.4 35.8 5.5± 0.2 3.8 6.5± 0.2 29.3 5.4

OKAPI BM25 [28] 4.5± 0.5 31.8± 0.4 45.8± 0.5 56.6 20.6± 4.8 10.5 8.5± 0.4 55.9 17.9
LSI [11] 2.4± 0.7 31.1± 0.8 41.6± 0.5 37.5 3.1± 0.2 3.3 7.7± 0.4 30.7 6.3
LDA [2] 7.1± 0.9 32.7± 0.3 50.9± 0.4 50.7 5.0± 0.2 7.9 11.6± 0.8 30.9 16.5

MSDA [4] 21.8± 7.4 37.9± 2.8 48.0± 1.6 40.4 11.2± 1.8 5.2 23.6± 3.1 26.8 16.1
DISTANCES IN THE WORD MOVER’S FAMILY

WCD [19] 11.3± 1.1 30.7± 0.9 49.4± 0.3 48.9 6.6± 0.2 4.7 9.2± 0.2 36.2 13.5
WMD [19] 4.6± 0.7 28.7± 0.6 42.6± 0.3 44.5 2.8± 0.1 3.5 7.4± 0.3 26.8 6.1

S-WCD 4.6± 0.5 30.4± 0.5 51.3± 0.2 43.3 5.8± 0.2 3.9 7.6± 0.3 33.6 11.4
S-WMD INIT. 2.8± 0.3 28.2± 0.4 39.8± 0.4 38.0 3.3± 0.3 3.5 5.8± 0.2 28.4 4.3

S-WMD 2.1± 0.5 27.5± 0.5 39.2± 0.3 34.3 3.2± 0.2 3.2 5.8± 0.1 26.8 2.4

(LMNN) [37] learns a metric that encourages inputs with similar labels to be close in a local region,298

while encouraging inputs with different labels to be farther by a large margin. Information-Theoretic299

Metric Learning (ITML) [10] learns a metric by minimizing a KL-divergence subject to generalized300

Euclidean distance constraints. Cuturi & Avis [7] was the first to consider learning the ground301

distance in the Earth Mover’s Distance (EMD). In a similar work, Wang & Guibas [35] learns a302

ground distance that is not a metric, with good performance in certain vision tasks. Most similar303

to our work Wang et al. [36] learn a metric within a generalized Euclidean EMD ground distance304

using the framework of ITML for image classification. They do not, however, consider re-weighting305

the histograms, which allows our method extra flexibility. Until recently, there has been relatively306

little work towards learning supervised word embeddings, as state-of-the-art results rely on making307

use of large unlabeled text corpora. Tang et al. [33] propose a neural language model that uses label308

information from emoticons to learn sentiment-specific word embeddings.309

6 Conclusion310

We proposed a powerful method to learn a supervised word mover’s distance, and demonstrated that311

it may well be the best performing distance metric for documents to date. Similar to WMD, our312

S-WMD benefits from the large unsupervised corpus, which was used to learn the word2vec embed-313

ding [22, 23]. The word embedding gives rise to a very good document distance, which is particu-314

larly forgiving when two documents use syntactically different but conceptually similar words. Two315

words may be similar in one sense (topic) but dissimilar in another (authorship), depending on the316

articles in which they are contained. It is these differences that S-WMD manages to capture through317

supervised training. By learning a linear metric and histogram re-weighting through the optimal318

transport of the word mover’s distance, we are able to produce state-of-the-art classification results319

in a surpisingly short training time.320
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