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Abstract

During the past decade, machine learning algorithms have be-
come commonplace in large-scale real-world industrial appli-
cations. In these settings, the computation time to train and
test machine learning algorithms is a key consideration. At
training-time the algorithms must scale to very large data set
sizes. At testing-time, the cost of feature extraction can domi-
nate the CPU runtime. Recently, a promising method was pro-
posed to account for the feature extraction cost at testing time,
called Cost-sensitive Tree of Classifiers (CSTC). Although
the CSTC problem is NP-hard, the authors suggest an approx-
imation through a mixed-norm relaxation across many clas-
sifiers. This relaxation is slow to train and requires involved
optimization hyperparameter tuning. We propose a different
relaxation using approximate submodularity, called Approx-
imately Submodular Tree of Classifiers (ASTC). ASTC is
much simpler to implement, yields equivalent results but re-
quires no optimization hyperparameter tuning and is up to
two orders of magnitude faster to train.

Introduction
Machine learning is rapidly moving into real-world in-
dustrial settings with widespread impact. Already, it has
touched ad placement (Bottou et al., 2013), web-search
ranking (Zheng et al., 2008), large-scale threat detection
(Zhang et al., 2013), and email spam classification (Wein-
berger et al., 2009). This shift, however, often introduces re-
source constraints on machine learning algorithms. Specif-
ically, Google reported an average of 5.9 billion searches
executed per day in 2013. Running a machine learning al-
gorithm is impractical unless it can generate predictions in
tens of milliseconds. Additionally, a large scale corporation
may want to limit the amount of carbon consumed through
electricity use. Taking into account the needs of the learning
setting is a step machine learning must make if it is to be
widely adopted outside of academic settings.

In this paper we focus on the resource of test-time CPU
cost. This test-time cost is the total cost to evaluate the clas-
sifier and to extract features. In industrial settings, where
linear models are prevalent, the feature extraction cost dom-
inates the test-time CPU cost. Typically, this cost must be
strictly within budget in expectation. For example, an email
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spam classifier may have 10 milliseconds per email, but can
spend more time on difficult cases as long as it can be faster
on easier ones. A key insight to facilitate this flexibility is to
extract different features for different test instances.

Recently, a model for the feature-cost efficient learning
setting was introduced that demonstrates impressive test-
time cost reductions for web search (Xu et al., 2014). This
model, called Cost-Sensitive Tree of Classifiers (CSTC), par-
titions test inputs into subsets using a tree structure. Each
node in the tree is a sparse linear classifier that decides
what subset a test input should fall into, by passing these
inputs along a path through the tree. Once an input reaches
a leaf node it is classified by a specialized leaf classifier. By
traversing the tree along different paths, different features
are extracted for different test inputs. While CSTC demon-
strates impressive real-world performance, the training time
is non-trivial and the optimization procedure involves sev-
eral sensitive hyperparameters.

Here, we present a simplification of CSTC, that takes ad-
vantage of approximate submodularity to train a near op-
timal tree of classifiers. We call our model Approximately
Submodular Tree of Classifiers (ASTC). We make a number
of novel contributions: 1. We show how the CSTC optimiza-
tion can be formulated as an approximately submodular set
function optimization problem, which can be solved greed-
ily. 2. We reduce the training complexity of each classifier
within the tree to scale linearly with the training set size. 3.
We demonstrate on several real-world datasets that ASTC
matches CSTC’s cost/accuracy trade-offs, yet it is signifi-
cantly quicker to implement, requires no additional hyper-
parameters for the optimization and is up to two orders of
magnitude faster to train.

Resource-efficient learning
In this section we formalize the general setting of resource-
efficient learning and introduce our notation. We are given a
training dataset with inputs and class labels {(xi, yi)}ni=1 =
(X,y) ∈ R(n,d)×Yn (in this paper we limit our analysis to
the regression case). Without loss of generality we assume
for each feature vector xf ∈ Rn that ‖xα‖2 = 1, for all α =
1, . . . , d, and that ‖y‖2 = 1, all with zero mean. Our aim is
to learn a linear classifier hβ(x)=x>β that generalizes well
to unseen data and uses the available resources as effectively
as possible. We assume that each feature α incurs a cost of



c(α) during extraction. Additionally, let `(·) be a convex loss
function and let B be a budget on its feature cost. Formally,
we want to solve the following optimization problem,

min
β

`(y;X,β) subject to
∑

α:|β|>0

c(α) ≤ B, (1)

where
∑
α:|β|>0 c(α) sums over the (used) features with

non-zero weight in β.

Cost-sensitive tree of classifiers (CSTC)
Recent work in resource-budgeted learning (Xu et al., 2014)
(CSTC) shows impressive results by learning multiple clas-
sifiers from eq. (1) which are arranged in a tree (depth
D) β1, . . . ,β2D−1. The CSTC model is shown in figure 1
(throughout the paper we consider the linear classifier ver-
sion of CSTC). Each node vk is a classifier whose predic-
tions x>βk for an input x are thresholded by θk. The thresh-
old decides whether to send x to the upper or lower child of
vk. An input continues through the tree in this way until ar-
riving at a leaf node, which predicts its label.

Combinatorial optimization. There are two road-blocks
to learning the CSTC classifiers βk. First, because instances
traverse different paths through the tree, the optimization is
a complex combinatorial problem. In Xu et al. (2014), they
fix this by probabilistic tree traversal. Specifically, each clas-
sifier x>βk is trained using all instances, weighted by the
probability that instances reach vk. This probability is de-
rived by squashing node predictions using the sigmoid func-
tion: σ(x>β) = 1/(1 + exp(−x>β)).

To make the optimization more amenable to gradient-
based methods, Xu et al. (2014) convert the constrained op-
timization problem in eq. (1) to the Lagrange equivalent and
minimize the expected classifier loss plus the expected fea-
ture cost, where the expectation is taken over the probability
of an input reaching node vk,

min
βk

1

n

n∑
i=1

pki (yi − x>i β
k)2

︸ ︷︷ ︸
exp. squared loss

+ρ‖βk‖1 + λ E[C(βk)].︸ ︷︷ ︸
exp. feature cost

(2)

Here pki is the probability that instance xi traverses to vk and
ρ is the regularization constant to control overfitting. The last
term is the expected feature cost of βk,

E[C(βk)] =
∑
vl∈Pk

pl

[∑
α

c(α)

∥∥∥∥∥∥
∑
vj∈πl

|βjα|

∥∥∥∥∥∥
0

]
. (3)

The outer-most sum is over all leaf nodes Pk affected by
βk and pl is the probability of any input reaching such a
leaf node vl. The remaining terms describe the cost incurred
for an input traversing to that leaf node. CSTC makes the
assumption that, once a feature is extracted for an instance
it is free for future requests. Therefore, CSTC sums over all
features α and if any classifier along the path to leaf node
vl uses feature α, it is paid for exactly once (πl is the set of
nodes on the path to vl).
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Figure 1: The CSTC tree (depth 3). Instances x are sent
along a path through the tree (e.g., in red) based on the pre-
dictions of node classifiers βk. If predictions are above a
threshold θk, x is sent to an upper child node, otherwise it is
sent to a lower child. The leaf nodes predict the class of x.

`0 norm and differentiability. The second optimization
road-block is that this feature cost term is non-continuous,
and is thus hard to optimize. Their solution is to derive a
continuous relaxation of the `0 norm using the mixed-norm
(Kowalski, 2009). The final optimization is non-covex and
not differentiable and the authors present a variational ap-
proach, introducing auxiliary variables for both `0 and `1
norms so that the optimization can be solved with cyclic
block-coordinate descent.

There are a number of practical difficulties that arise when
using CSTC for a given dataset. First, optimizing a non-
leaf node in the CSTC tree affects all descendant nodes via
the instance probabilities. This slows the optimization and
is difficult to implement. Second, the optimization is sensi-
tive to gradient learning rates and convergence thresholds,
which require careful tuning. In the same vein, selecting
appropriate ranges for hyperparameters λ and ρ may take
repeated trial runs. Third, because CSTC needs to reopti-
mize all classifier nodes the training time is non-trivial for
large datasets, making hyperparameter tuning on a valida-
tion set time-consuming. Additionally, the stationary point
reached by block coordinate descent is initialization depen-
dent. These difficulties may serve as significant barriers to
entry, potentially preventing practitioners from using CSTC.

Model
In this paper we propose a vastly simplified variant of the
CSTC classifier, called Approximately Submodular Tree of
Classifiers (ASTC). Instead of relaxing the expected cost
term into a continuous function, we reformulate the entire
optimization as an approximately submodular set function
optimization problem.

ASTC nodes. We begin by considering an individual clas-
sifier βk in the CSTC tree, optimized using eq. (2). If we
ignore the effect of βk on descendant leaf nodes Pk and
previous nodes on its path πk, the feature cost changes:

E[C(βk)] =
∑
α

c(α)‖βkα‖0. (4)



This combined with the loss term is simply a weighted
classifier with cost-weighted `0-regularization. We propose
to greedily select features based on their performance/cost
trade-off and to build the tree of classifiers top-down, start-
ing from the root. We will solve one node at a time and set
features ‘free’ that are used by parent nodes (as they need
not be extracted twice). Figure 2 shows a schematic of the
difference between the optimization of ASTC and the reop-
timization of CSTC.

Resource-constrained submodular optimization. An al-
ternative way to look at the optimization of a single CSTC
node is as an optimization over sets of features. Let Ω be
the set of all features. Define the loss function for node vk,
`k(A), over a set of features A ⊆ Ω as such,

`k(A) = min
βk

1

n

n∑
i=1

pki (yi − δA(xi)
>βk)2 (5)

where we treat probabilities pki as indicator weights: pki = 1
if input xi is sent to vk, and to 0 otherwise. Define δA(x) as
an element-wise feature indicator function that returns fea-
ture xa if a ∈ A and 0 otherwise. Thus, `k(·) is the squared
loss of the optimal model using only (a) inputs that reach
vk and (b) the features in set A. Our goal is to select a set
of features A that have low cost, and simultaneously have a
low optimal loss `k(A).

Certain problems in constrained set function optimization
have very nice properties. Particularly, a class of set func-
tions, called submodular set functions, have been shown to
admit simple near-optimal greedy algorithms (Nemhauser,
Wolsey, and Fisher, 1978). For the resource-constrained
case, each feature (set element) a has a certain resource cost
c(a), and we would like to ensure that the cost of selected
features fall under some resource budget B. For a submod-
ular function s that is non-decreasing and non-negative the
resource-constrained set function optimization,

max
A⊆Ω

s(A) subject to
∑
a∈A

c(a) ≤ B (6)

can be solved near-optimally by greedily selecting set ele-
ments a ∈ Ω that maximize s as such,

gj = argmax
a∈Ω

[
s(Gj−1 ∪ a)− s(Gj−1)

c(a)

]
. (7)

Where we define the greedy ordering Gj−1 =
(g1, g2, . . . , gj−1). To find gj we evaluate all remain-
ing set elements a ∈ Ω \Gj−1 and pick the element gj = â
for which s(Gj−1 ∪ a) increases the most over s(Gj−1)
per cost. Let G〈T 〉 = (g1, . . . , gm) be the largest feasible
greedy set, having total cost T (i.e.,

∑m
j=1 c(gj) = T ≤ B

and T + c(gm+1) > B). Streeter and Golovin (2007)
prove that for any non-decreasing and non-negative sub-
modular function s and some budget B, eq. (7) gives an
approximation ratio of (1 − e−1) ≈ 0.63 with respect to
the optimal set with cost T ≤ B. Call this set C∗〈T 〉. Then,
s(G〈T 〉) ≥ (1− e−1)s(C∗〈T 〉) for the optimization in eq. (6).
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Figure 2: The optimization schemes of CSTC and ASTC.
Left: When optimizing the classifier and threshold of node
v2, (β2, θ2) in CSTC, it affects all of the descendant nodes
(highlighted in blue). If the depth of the tree is large (i.e.,
larger than 3), this results in a complex and expensive gra-
dient computation. Right: ASTC on the other hand opti-
mizes each node greedily using the familiar ordinary least
squares closed form solution (shown above). θ2 is set by bi-
nary search to send half of the inputs to each child node.

Optimization
In this section we demonstrate that optimizing a single
CSTC node, and hence the CSTC tree, greedily is approx-
imately submodular. We begin by introducing a modifica-
tion to the set function (5). We then connect this to the ap-
proximation ratio of the greedy cost-aware algorithm eq. (7),
demonstrating that it produces near-optimal solutions. The
resulting optimization is very simple to implement and is
described in Algorithm 1.

Approximate submodularity. To make `k(·) amenable to
resource-constrained set function optimization (6) we con-
vert the loss minimization problem into an equivalent label
‘fit’ maximization problem. Define the set function zk,

zk(A) =
Var(y; pk)− `k(A)

Var(y; pk)
(8)

where Var(y; pk) =
∑
i p
k
i (yi − ȳ)2 is the variance of the

training label vector y multiplied by 0/1 probabilities pki
(ȳ is the mean predictor). It is straightforward to show that
maximizing zk(·) is equivalent to minimizing `k(·). In fact,
the following approximation guarantees hold for zk(·) con-
structed from a wide range of loss functions (via a modifi-
cation of Grubb and Bagnell (2012)). As we are interested
in developing a new method for CSTC training, we focus
purely on the squared loss. Note that zk(·) is always non-
negative (as the mean predictor is a worse training set pre-
dictor than the OLS solution using one feature, assuming it
takes on more than one value). To see that it is also non-
decreasing note that zk(·) is precisely the squared multi-
ple correlation R2 (Diekhoff, 1992), (Johnson and Wichern,
2002), which is known to be non-decreasing.

If the features are orthogonal then zk(·) is submodular
(Krause and Cevher, 2010). However, if this is not the case



it can be shown that zk(·) is approximately submodular and
has a submodularity ratio, defined as such:

Definition 2.1 (Submodularity Ratio) (Das and Kempe,
2011). Any non-negative set function z(·) has a submodular-
ity ratio γU,i for a set U ⊆ Ω and i ≥ 1,∑

s∈S

[
z(L ∪ {s})− z(L)

]
≥ γU,i

[
z(L ∪ S)− z(L)

]
,

for all L, S ⊂ U , such that |S| ≤ i and S ∩ L = ∅.

The submodularity ratio ranges from 0 (z(·) is not sub-
modular) to 1 (z(·) is submodular) and measures how close
a function z(·) is to being submodular. As is done in Grubb
and Bagnell (2012), for simplicity we will only consider the
smallest submodularity ratio γ ≤ γU,i for all U and i.

The submodularity ratio in general is non-trivial to com-
pute. However, we can take advantage of work by Das and
Kempe (2011) who show that the submodularity ratio of
zk(·), defined in eq. (8), is further bounded. Define Ck

A as
the covariance matrix of X̃, where x̃i = pki δA(xi) (in-
puts weighted by the probability of reaching vk, using only
the features in A). Das and Kempe (2011) show in Lemma
2.4 that for zk(·), it holds that γ ≥ λmin(Ck

A), where
λmin(Ck

A) is the minimum eigenvalue of Ck
A.

Approximation ratio. As in the submodular case, we
can optimize zk(·) subject to the resource constraint that
the cost of selected features must total less than a resource
budget B. This optimization can be done greedily using the
rule described in eq. (7). The following theorem—which
is proved for any non-decreasing, non-negative, approx-
imately submodular set function in Grubb and Bagnell
(2012)—gives an approximation ratio for this greedy rule.

Theorem 2.2 (Grubb and Bagnell, 2012). The greedy al-
gorithm selects an ordering G〈T 〉 such that,

zk(G〈T 〉) > (1− e−γ)zk(C∗〈T 〉)
where G〈T 〉 = (g1, g2, . . . , gm) is the greedy sequence
truncated at cost T , such that

∑m
i=1 c(gi) = T ≤ B and

C∗〈T 〉 is the set of optimal features having cost T .

Thus, the approximation ratio depends directly on the sub-
modularity ratio of zk(·). For each node in the CSTC tree we
greedily select features using the rule described in (7). If we
are not at the root node, we set the cost of features used by
the parent of vk to 0, and select them immediately (as we
have already paid their cost). We fix a new-feature budget
B—identical for each node in the tree—and then greedily
select new features up to cost B for each node. By setting
probabilities pki to 0 or 1 depending on if xi traverses to vk,
learning each node is like solving a unique approximately
submodular optimization problem, using only the inputs sent
to that node. Finally, we set node thresholds θk to send half
of the training inputs to each child node.

We call our approach Approximately Submodular Tree of
Classifiers (ASTC), which is shown in Algorithm 1. The op-
timization is much simpler than CSTC.

Algorithm 1 ASTC in pseudo-code.
1: Inputs: {X,y}; tree depth D; node budget B, costs c
2: Set the initial costs c1 = c
3: for k = 1 to 2D − 1 nodes do
4: Gk = ∅
5: while budget not exceeded:

∑
g∈Gk c(g) ≤ B do

6: Select feature a ∈ Ω via eq. (7)
7: Gk = Gk ∪ {a}
8: end while
9: Solve βk using weighted ordinary least squares

10: if vk is not a leaf node, with children vl and vu then
11: Set child probabilities:

pui =

{
1 if pki > θk

0 otherwise
pli =

{
1 if pki ≤ θk
0 otherwise

12: Set new feature costs: cu = cl = ck

13: Free used features: cu(Gk) = cl(Gk) = 0
14: end if
15: end for
16: Return {β1,β2, . . .β2D−1}

Fast greedy selection
Equation (7) requires solving an ordinary least squares prob-
lem, eq. (5), when selecting the feature that improves zk(·)
the most. This requires a matrix inversion which typically
takes O

(
d3
)

time. However, because we only consider se-
lecting one feature at a time we can avoid the inversion for
zk(·) altogether using the QR decomposition. Let Gj =
(g1, g2, . . . , gj) be our current set of greedily-selected fea-
tures. For simplicity let XGj

= δGj
(X), the data masked so

that only features in Gj are non-zero. Computing zk(·) re-
quires computing the weighted squared loss, eq. (5), which,
after the QR decomposition requires no inverse. Redefine

xi =

√
pki
n xi and yi =

√
pki
n yi, then we have,

`k(Gj) = min
βk

(y −XGjβ
k)>(y −XGjβ

k). (9)

Let XGj = QR be the QR decomposition of XGj . Plugging
in this decomposition, taking the gradient of `k(Gj) with
respect to βk, and solving at 0 yields (Hastie, Tibshirani,
and Friedman, 2001),

βk = R−1Q>y

The squared loss for the optimal βk is,

`k(Gj) = (y −QRR−1Q>y)>(y −QRR−1Q>y)

= (y −QQ>y)>(y −QQ>y)

= y>y − y>QQ>y. (10)

Imagine we have extracted j features and we are considering
selecting a new feature a. The immediate approach would be
to recompute Q including this feature and then recompute
the squared loss (10). However, computing qj+1 (the col-
umn corresponding to feature a) can be done incrementally



using the Gram–Schmidt process:

qj+1 =
Xa −

∑j
m=1(X>a qm)qm

‖Xa −
∑j
m=1(X>a qm)qm‖2

=
Xa −QQ>Xa

‖Xa −QQ>Xa‖2
where q1 = Xg1/‖Xg1‖2 (recall g1 is the first greedily-
selected feature). Finally, in order to select the best next fea-
ture using eq. (7), for each feature a we must compute,

zk(Gj ∪ a)− zk(Gj)

c(a)
=
−`k(Gj ∪ a) + `k(Gj)

Var(y;pk)c(a)

=
y>Q1:j+1Q

>
1:j+1y − y>QQ>y

Var(y;pk)c(a)

=
(q>j+1y)2

Var(y;pk)c(a)
(11)

where Q1:j+1 =
[
Q,qj+1

]
. The first two equalities follow

from the definitions of zk(·) and `k(·). The third equality
follows because Q and Q1:j+1 are orthogonal matrices.

We can compute all of the possible qj+1 columns, corre-
sponding to all of the remaining features a in parallel, call
this matrix Qremain. Then we can compute eq. (11) vector-
wise on Qremain and select the feature with the largest cor-
responding value of zk(·).

Complexity. Computing the ordinary least squares solu-
tion the naive way for the (j+1)th feature: (X>X)−1X>y
requires O

(
n(j + 1)2 + (j + 1)3

)
for the covariance mul-

tiplication and inversion. This must be done d − j times to
compute zk(·) for every remaining feature. Using the QR
decomposition, computing qj+1 requires O

(
nj
)

time and
computing eq. (11) takes O

(
n
)

time. As before, this must
be done d − j times for all remaining features, but as men-
tioned above both steps can be done in parallel.

Results
In this section, we evaluate our approach on a real-world
feature-cost sensitive ranking dataset: the Yahoo! Learn-
ing to Rank Challenge dataset. We begin by describing the
dataset and show Precision@5 per cost compared against
CSTC (Xu et al., 2014) and another cost-sensitive baseline.
We then present results on a diverse set of non-cost sensitive
datasets, demonstrating the flexibility of our approach. For
all datasets we evaluate the training times of our approach
compared to CSTC for varying tree budgets.

Yahoo! learning to rank. To judge how well our approach
performs in a particular real-world setting, we test ASTC
on the binary Yahoo! Learning to Rank Challenge data set
(Chen et al., 2012). The dataset consists of 473, 134 web
documents and 19, 944 queries. Each input xi is a query-
document pair containing 519 features, each with extraction
costs in the set {1, 5, 20, 50, 100, 150, 200}. The unit of cost
is in weak-learner evaluations (i.e., the most expensive fea-
ture takes time equivalent to 200 weak-learner evaluations).
We remove the mean and normalize the features by their `2
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Figure 3: Plot of ASTC, CSTC, and a cost-sensitive base-
line on a real-world feature-cost sensitive dataset (Yahoo!)
and three non-cost sensitive datasets (Forest, CIFAR, Mini-
BooNE). ASTC demonstrates roughly the same error/cost
trade-off as CSTC, sometime improving upon CSTC. For
Yahoo! circles mark the CSTC points that are used for train-
ing time comparison, otherwise, all points are compared.

norm, as is assumed by the submodularity ratio bound anal-
ysis. We use the Precision@5 metric, which is often used for
binary ranking datasets.

Figure 3 compares the test Precision@5 of CSTC with
the greedy algorithm described in Algorithm 1 (ASTC). For
both algorithms we set a maximum tree depth of 5. We also
compare against setting the probabilities pki using the sig-
moid function σ(x>βk) = 1/(1 + exp(−x>βk)) on the
node predictions as is done by CSTC (ASTC, soft). Specif-
ically, the probability of an input x traversing from parent
node vk to its upper child vu is σ(x>βk − θk) and to its
lower child vl is 1−σ(x>βk−θk). Thus, the probability of
x reaching node vk from the root is the product of all such
parent-child probabilities from the root to vk. Unlike CSTC,
we disregard the effect βk has on descendant node probabil-
ities (see Figure 2). Finally, we also compare against a single
cost-weighted `1-regularized classifier.

We note that the ASTC methods perform just as good, and
sometimes slightly better, than state-of-the-art CSTC. All of
the techniques perform better than the single `1 classifier, as
it must extract features that perform well for all instances.
CSTC and ASTC instead may select a small number of ex-
pert features to classify small subsets of test inputs.

Forest, CIFAR, MiniBooNE. We evaluate ASTC on three
very different non-cost sensitive datasets in tree type and im-
age classification (Forest, CIFAR), as well as particle iden-
tification (MiniBooNE). As the feature extraction costs are
unknown we set the cost of each feature α to c(α) = 1. As
before, ASTC is able to improve upon CSTC.

Training time speed-up. Tables 1 and 2 show the speed-
up of our approaches over CSTC for various tree budgets.



Table 1: Training speed-up of ASTC over CSTC for different tree budgets on Yahoo! and Forest datasets.
YAHOO! FOREST

COST BUDGETS 10 52 86 169 468 800 1495 3 5 8 13 23 50
ASTC 119X 52X 41X 21X 15X 9.2X 6.6X 8.4X 7.0X 6.3X 4.9X 3.1X 1.4X

ASTC, SOFT 121X 48X 46X 18X 15X 8.2X 6.4X 8.0X 6.4X 5.7X 4.5X 2.8X 1.5X

Table 2: Training speed-up of ASTC over CSTC for CIFAR and MiniBooNE datasets.
CIFAR MINIBOONE

COST BUDGETS 9 24 76 180 239 4 5 12 14 18 33 47
ASTC 5.6X 2.3X 0.68X 0.25X 0.14X 7.4X 7.9X 5.5X 5.2X 4.1X 3.1X 2.0X

ASTC, SOFT 5.3X 2.3X 0.62X 0.27X 0.13X 7.2X 6.2X 5.9X 4.2X 4.3X 2.5X 1.7X

For a fair speed comparison, we first learn a CSTC tree for
different values of λ, which controls the allowed feature ex-
traction cost (the timed settings on the Yahoo! dataset are
marked with black circles on Figure 3, whereas all points are
timed for the other datasets). We then determine the cost of
unique features extracted at each node in the learned CSTC
tree. We set these unique feature costs as individual node
budgets Bk for ASTC methods and greedily learn tree fea-
tures until reaching the budget for each node. We note that
on the real-world feature-cost sensitive dataset Yahoo! the
ASTC methods are consistently faster than CSTC. Of the
remaining datasets ASTC is faster in all settings except for
three parameter settings on CIFAR. One possible explana-
tion for the reduced speed-ups is that the training set of these
datasets are much smaller (Forest: n= 36, 603 d= 54; CI-
FAR: n=19, 761 d=400; MiniBooNE: n=45, 523 d=50)
than Yahoo! (n=141, 397 and d=519). Thus, the speed-ups
are not as pronounced and the small, higher dimensionality
CIFAR dataset trains slightly slower than CSTC.

Related work
Prior to CSTC (Xu et al., 2014), a natural approach to con-
trolling feature resource cost is to use `1-regularization to
obtain a sparse set of features (Efron et al., 2004). One
downside of these approaches is that certain inputs may only
require a small number of cheap features to compute, while
other inputs may require a number of expensive features.

This scenario motivated the development of CSTC (Xu et
al., 2014). There are a number of models that use similar
decision-making schemes to speed-up test-time classifica-
tion. This includes Dredze, Gevaryahu, and Elias-Bachrach
(2007) who build feature-cost sensitive decision trees, Busa-
Fekete et al. (2012) who use a Markov decision process to
adaptively select features for each instance, Xu et al. (2013b)
who build feature-cost sensitive representations, and Wang
and Saligrama (2012) who learn subset-specific classifiers.

Feature selection has been tackled by a number of sub-
modular optimization papers (Krause and Cevher, 2010; Das
and Kempe, 2011; Das, Dasgupta, and Kumar, 2012; Krause
and Guestrin, 2012). Surprisingly, until recently, there were
relatively few papers addressing resource-efficient learning.
Grubb and Bagnell (2012) greedily learn weak learners that
are cost-effective using (orthogonal) matching pursuit. Work
last year (Zolghadr et al., 2013) considers an online setting
in which a learner can purchase features in ‘rounds’. Most

similar to our work is Golovin and Krause (2011) who learn
a policy to adaptively select features to optimize a set func-
tion. Differently, their work assumes the set function is fully
submodular and every policy action only selects a single ele-
ment (feature). To our knowledge, this work is the first tree-
based model to tackle resource-efficient learning using ap-
proximate submodularity.

Conclusion
We have introduced Approximately Submodular Tree of
Classifiers (ASTC), using recent developments in approxi-
mate submodular optimization to develop a practical near-
optimal greedy method for feature-cost sensitive learning.
The resulting optimization yields an efficient update scheme
for training ASTC up to 120 times faster than CSTC.

One limitation of this approach is that the approximation
guarantee does not hold if features are preprocessed. Specif-
ically, for web-search ranking, it is common to first perform
gradient boosting to generate a set of limited-depth decision
trees. The predictions of these decision trees can then be
used as features, as in non-linear of CSTC (Xu et al., 2013a).

Additionally, a set of features may cost less than the sum
of their individual costs. One common example is image de-
scriptors for object detection such as HOG features (Dalal
and Triggs, 2005). A descriptor can be thought of as a group
of features. Once a single feature from the group is selected,
the remaining features in the group become ‘free’, as they
were already computed for the descriptor. Extending ASTC
to these features would widen the scope of the approach.

Overall, by presenting a simple, near-optimal method for
feature-cost sensitive learning we hope to bridge the gap
between machine learning models designed for real-world
industrial settings and those implemented in such settings.
Without the need for expert tuning and with faster training
we believe our approach can be rapidly used in an increasing
number of large-scale machine learning applications.
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