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How can we reduce this complexity?

| reduce n Training Consistent Sampling
[Hart, 1968]
[Anguilli, 2005]
Prototype Generation
[Bandyopadhyay & Maulik, 2002]
[Mollineda et al., 2002]

Prototype Positioning

[Bermejo & Cabestany, 1999]
[Toussaint 2002]
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[ Tenenbaum et al., 2000
2. reduce d ‘Hinton & Roweis, 2002

'Weinberger et al., 2004]
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[Weinberger & Saul, 2009]
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Table 1. Characteristics of datasets used 1n evaluation.

DATASET STATISTICS
NAME n |V d (dr)

YALE-FACES 1961 38 8064 (100)
ISOLET 3898 20 617 (172)

LETTERS 16000 26 16 (16)
ADULT 32562 2 123 (50)
WEA 49749 2 300 (100)
MNIST 60000 10 784 (164)

FOREST 100000 7 54 (54)
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[Hinton & Roweis, 2002]

o Compression by 96% without error increase in 5/7 cases

o test-time speed-ups on top of NN data structures
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