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1. reduce n Training Consistent Sampling 

Prototype Generation

Prototype Positioning

[Hart, 1968]
[Anguilli, 2005]

[Mollineda et al., 2002]
[Bandyopadhyay & Maulik, 2002]

[Bermejo & Cabestany, 1999]
[Toussaint 2002]
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1. reduce n

2. reduce d

Dimensionality Reduction

[Hinton & Roweis, 2002]
[Tenenbaum et al., 2000]

[Weinberger et al., 2004]
[van der Maaten & Hinton, 2008]

[Weinberger & Saul, 2009]
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[Omohundro, 1989]
[Beygelzimer et al., 2006]

[Andoni & Indyk, 2006]
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Dataset Compression

3. use data structures
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Main Idea
learn new synthetic inputs!

use ‘compressed’ set to make future predictions

‘compressed’ data
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j:ŷj=yi

exp(��2kxi � zjk2
2),

min

z1,...,zm

nX

i=1

� log(pi)

minimize negative log likelihood

use conjugate 
gradient descent!
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[Weinberger & Saul, 2009]
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Summary
▫ learns a compressed training set for NN classifier

▫ Stochastic Neighborhood
[Hinton & Roweis, 2002]

subsample after optimizationoriginal data

▫ Compression by 96% without error increase in 5/7 cases

▫ test-time speed-ups on top of NN data structures

Stochastic Neighbor Compression
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