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Privacy in Learning
training set 1 hyperplane 1 training set 2 hyperplane 2

learning can reveal information about the training set!
[Kasiviswanathan et al., 2008;  Dwork & Lei, 2009; Chaudhuri et al., 2011; 

Chaudhuri & Hsu, 2012; Jain et al., 2012; Kifer et al., 2012; Smith & Thakurta, 
2013; Jain & Thakurta, 2014; Bassily et al., 2014]
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Privacy in Hyperparameter Tuning

selecting hyperparameters can reveal 
information about the validation set!

[Chaudhuri & Vinterbo, 2013]

Selecting Hyperparameters

grid search

prior work: 
private grid search

Bayesian Optimization (BO)
[Hutter et al. 2011; Bergstra & Bengio, 2012; 

Snoek et al. 2012; Gardner et al., 2014]

this work: 
private BO

e.g., RBF Kernel SVM has hyperparameters:
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Bayesian Optimization
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�
f(�)

is very expensive to compute
is nonconvex

idea: model        with an easy-to-evaluate surrogate 
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figure credit: [Rasmussen & Williams, 2006]

2. fit a Gaussian Process1. given samples 3. Maximize UCB

[Srinivas et al., 2010]
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figure credit: [Brochu et al., 2010]
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Return: best        seen so far
How to make this procedure private?
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Differential Privacy
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Definition 1. A randomized algorithm A is (✏, �)-differentially private for ✏, � � 0 if

for all f(�) 2 Range(A) and for all neighboring datasets V,V 0
(i.e., such that V and

V 0
differ in the value of one record) we have that

Pr
⇥
A(V) = f(�)

⇤
 e✏ Pr

⇥
A(V 0) = f(�)

⇤
+ �.

[Dwork et al., 2006]

A formalization of “privacy through randomness”

            -differentially private runs is            -diff. private
post-processing doesn’t decrease privacy
immune to common attacks (e.g., linkage, differencing attacks)

properties

Goal: mask change in    when run on    vs.    . V V 0A
Definition 2. The global sensitivity of an algorithm A over all neighboring datasets

V,V 0
(i.e., V,V 0

differ by the value of one record) is

�A , max

V,V0
kA(V)�A(V 0

)k1.

Laplace Mechanism
1. Draw ! ⇠ Laplace(0,�A/✏) 2. Release A(V) + !

[Dwork et al., 2006]
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A Private Mechanism

Our Results

Theorem 3. Given Assumption 2, for neighboring V,V 0
and arbitrary � < �0 (and

�min is the smallest hyperparameter) we have that,

|f(�)�f 0(�0)|  (�0��)L
�0� + min

� g⇤

m , L
m�min

 

where L is the Lipschitz constant of f , m is the size of V , and g is defined in the paper.

Assumption 1:          and          are GP distributedf(�) f 0(�)

Assumption 2:          and is L-Lipschitz (additionally 
training loss is L-Lipschitz and convex)

f(�)
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Theorem 1. Given Assumption 1 and the assumptions in Theorem 2 of de Freitas et al.
(2012), for neighboring datasets V,V 0 we have the following global sensitivity bound,

|f 0(�T )� f(�T )|  Ae
� T ⌧

(log T )

d/4 + c

w.p. at least 1 � � for c, d as defined in the paper and given constants A and ⌧ in de
Freitas et al. (2012), after T rounds of BO.

Theorem 2. Given Assumption 1, and neighboring V,V 0, we have the following global
sensitivity bound for the maximum v (noisy validation accuracy) after BO, w.p. �1��

|max

tT
v0t �max

tT
vt| 

p
C1�T �Tp

T
+ c + q.

(for c, q, C1, �T as defined in the paper), where �T is bounded above for the squared
exponential and Matérn kernels (Srinivas et al., 2010).

in the presence of noise...


